| Exam Board | Edexcel |
| Module | FP1 (Further Pure Mathematics 1) |
| Year | 2014 |
| Session | January |
| Topic | Sequences and Series |
6. (a) Use the standard results for \(\sum _ { r = 1 } ^ { n } r ^ { 3 }\) and \(\sum _ { r = 1 } ^ { n } r\) to show that for all positive integers \(n\),
$$\sum _ { r = 1 } ^ { n } r ( r + 1 ) ( r - 1 ) = \frac { 1 } { 4 } n ( n + 1 ) ( n - 1 ) ( n + a )$$
where \(a\) is an integer to be determined.
(b) Hence find the value of \(n\), where \(n > 1\), that satisfies
$$\sum _ { r = 1 } ^ { n } r ( r + 1 ) ( r - 1 ) = 10 \sum _ { r = 1 } ^ { n } r ^ { 2 }$$