Questions — Edexcel FP2 (291 questions)

Browse by board
AQA AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further AS Paper 1 Further AS Paper 2 Discrete Further AS Paper 2 Mechanics Further AS Paper 2 Statistics Further Paper 1 Further Paper 2 Further Paper 3 Discrete Further Paper 3 Mechanics Further Paper 3 Statistics M1 M2 M3 Paper 1 Paper 2 Paper 3 S1 S2 S3 CAIE FP1 FP2 Further Paper 1 Further Paper 2 Further Paper 3 Further Paper 4 M1 M2 P1 P2 P3 S1 S2 Edexcel AEA AS Paper 1 AS Paper 2 C1 C12 C2 C3 C34 C4 CP AS CP1 CP2 D1 D2 F1 F2 F3 FD1 FD1 AS FD2 FD2 AS FM1 FM1 AS FM2 FM2 AS FP1 FP1 AS FP2 FP2 AS FP3 FS1 FS1 AS FS2 FS2 AS M1 M2 M3 M4 M5 P1 P2 P3 P4 PMT Mocks Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 OCR AS Pure C1 C2 C3 C4 D1 D2 FD1 AS FM1 AS FP1 FP1 AS FP2 FP3 FS1 AS Further Additional Pure Further Additional Pure AS Further Discrete Further Discrete AS Further Mechanics Further Mechanics AS Further Pure Core 1 Further Pure Core 2 Further Pure Core AS Further Statistics Further Statistics AS H240/01 H240/02 H240/03 M1 M2 M3 M4 Mechanics 1 PURE Pure 1 S1 S2 S3 S4 Stats 1 OCR MEI AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further Extra Pure Further Mechanics A AS Further Mechanics B AS Further Mechanics Major Further Mechanics Minor Further Numerical Methods Further Pure Core Further Pure Core AS Further Pure with Technology Further Statistics A AS Further Statistics B AS Further Statistics Major Further Statistics Minor M1 M2 M3 M4 Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 SPS SPS ASFM SPS ASFM Mechanics SPS ASFM Pure SPS ASFM Statistics SPS FM SPS FM Mechanics SPS FM Pure SPS FM Statistics SPS SM SPS SM Mechanics SPS SM Pure SPS SM Statistics WJEC Further Unit 1 Further Unit 2 Further Unit 3 Further Unit 4 Further Unit 5 Further Unit 6 Unit 1 Unit 2 Unit 3 Unit 4
Edexcel FP2 2013 June Q7
  1. (a) Show that the transformation \(y = x v\) transforms the equation
$$4 x ^ { 2 } \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } - 8 x \frac { \mathrm {~d} y } { \mathrm {~d} x } + \left( 8 + 4 x ^ { 2 } \right) y = x ^ { 4 }$$ into the equation $$4 \frac { \mathrm {~d} ^ { 2 } v } { \mathrm {~d} x ^ { 2 } } + 4 v = x$$ (b) Solve the differential equation (II) to find \(v\) as a function of \(x\).
(c) Hence state the general solution of the differential equation (I).
Edexcel FP2 2013 June Q8
8. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{6b8b399d-ba16-4fcb-be45-0ba40a7ae09d-13_542_748_205_607} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} Figure 1 shows a curve \(C\) with polar equation \(r = a \sin 2 \theta , 0 \leqslant \theta \leqslant \frac { \pi } { 2 }\), and a half-line \(l\).
The half-line \(l\) meets \(C\) at the pole \(O\) and at the point \(P\). The tangent to \(C\) at \(P\) is parallel to the initial line. The polar coordinates of \(P\) are \(( R , \phi )\).
  1. Show that \(\cos \phi = \frac { 1 } { \sqrt { 3 } }\)
  2. Find the exact value of \(R\). The region \(S\), shown shaded in Figure 1, is bounded by \(C\) and \(l\).
  3. Use calculus to show that the exact area of \(S\) is $$\frac { 1 } { 36 } a ^ { 2 } \left( 9 \arccos \left( \frac { 1 } { \sqrt { 3 } } \right) + \sqrt { 2 } \right)$$
Edexcel FP2 2014 June Q1
  1. (a) Express \(\frac { 2 } { 4 r ^ { 2 } - 1 }\) in partial fractions.
    (b) Hence use the method of differences to show that
$$\sum _ { r = 1 } ^ { n } \frac { 1 } { 4 r ^ { 2 } - 1 } = \frac { n } { 2 n + 1 }$$
Edexcel FP2 2014 June Q2
2. Using algebra, find the set of values of \(x\) for which $$3 x - 5 < \frac { 2 } { x }$$
Edexcel FP2 2014 June Q3
3. (a) Find the general solution of the differential equation $$\frac { \mathrm { d } y } { \mathrm {~d} x } + 2 y \tan x = \mathrm { e } ^ { 4 x } \cos ^ { 2 } x , \quad - \frac { \pi } { 2 } < x < \frac { \pi } { 2 }$$ giving your answer in the form \(y = \mathrm { f } ( x )\).
(b) Find the particular solution for which \(y = 1\) at \(x = 0\)
Edexcel FP2 2014 June Q4
4. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{c9fff982-d38b-42ff-ab4e-08008439a95b-06_456_1273_262_388} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} Figure 1 shows the curve \(C\) with polar equation $$r = 2 \cos 2 \theta , \quad 0 \leqslant \theta \leqslant \frac { \pi } { 4 }$$ The line \(l\) is parallel to the initial line and is a tangent to \(C\). Find an equation of \(l\), giving your answer in the form \(r = \mathrm { f } ( \theta )\).
Edexcel FP2 2014 June Q5
5. $$y \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + 2 \left( \frac { \mathrm {~d} y } { \mathrm {~d} x } \right) ^ { 2 } + 2 y = 0$$
  1. Find an expression for \(\frac { \mathrm { d } ^ { 3 } y } { \mathrm {~d} x ^ { 3 } }\) in terms of \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } , \frac { \mathrm {~d} y } { \mathrm {~d} x }\) and \(y\). Given that \(y = 2\) and \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 0.5\) at \(x = 0\),
  2. find a series solution for \(y\) in ascending powers of \(x\), up to and including the term in \(x ^ { 3 }\).
    5. \(y \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + 2 \left( \frac { \mathrm {~d} y } { \mathrm {~d} x } \right) ^ { 2 } + 2 y = 0\)
  3. Find an expression for \(\frac { \mathrm { d } ^ { 3 } y } { \mathrm {~d} x ^ { 3 } }\) in terms of \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } , \frac { \mathrm {~d} y } { \mathrm {~d} x }\) and \(y\).
Edexcel FP2 2014 June Q6
6. The transformation \(T\) maps points from the \(z\)-plane, where \(z = x + \mathrm { i } y\), to the \(w\)-plane, where \(w = u + \mathrm { i } v\). The transformation \(T\) is given by $$w = \frac { z } { i z + 1 } , \quad z \neq i$$ The transformation \(T\) maps the line \(l\) in the \(z\)-plane onto the line with equation \(v = - 1\) in the \(w\)-plane.
  1. Find a cartesian equation of \(l\) in terms of \(x\) and \(y\). The transformation \(T\) maps the line with equation \(y = \frac { 1 } { 2 }\) in the \(z\)-plane onto the curve \(C\) in the \(w\)-plane.
    1. Show that \(C\) is a circle with centre the origin.
    2. Write down a cartesian equation of \(C\) in terms of \(u\) and \(v\).
Edexcel FP2 2014 June Q7
7. (a) Use de Moivre's theorem to show that $$\sin 5 \theta \equiv 16 \sin ^ { 5 } \theta - 20 \sin ^ { 3 } \theta + 5 \sin \theta$$ (b) Hence find the five distinct solutions of the equation $$16 x ^ { 5 } - 20 x ^ { 3 } + 5 x + \frac { 1 } { 2 } = 0$$ giving your answers to 3 decimal places where necessary.
(c) Use the identity given in (a) to find $$\int _ { 0 } ^ { \frac { \pi } { 4 } } \left( 4 \sin ^ { 5 } \theta - 5 \sin ^ { 3 } \theta \right) \mathrm { d } \theta$$ expressing your answer in the form \(a \sqrt { } 2 + b\), where \(a\) and \(b\) are rational numbers.
Edexcel FP2 2014 June Q8
8. (a) Show that the substitution \(x = \mathrm { e } ^ { z }\) transforms the differential equation $$x ^ { 2 } \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + 2 x \frac { \mathrm {~d} y } { \mathrm {~d} x } - 2 y = 3 \ln x , \quad x > 0$$ into the equation $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} z ^ { 2 } } + \frac { \mathrm { d } y } { \mathrm {~d} z } - 2 y = 3 z$$ (b) Find the general solution of the differential equation (II).
(c) Hence obtain the general solution of the differential equation (I) giving your answer in the form \(y = \mathrm { f } ( x )\).
\(\square\)
Edexcel FP2 2014 June Q1
  1. (a) Express \(\frac { 2 } { ( r + 2 ) ( r + 4 ) }\) in partial fractions.
    (b) Hence show that
$$\sum _ { r = 1 } ^ { n } \frac { 2 } { ( r + 2 ) ( r + 4 ) } = \frac { n ( 7 n + 25 ) } { 12 ( n + 3 ) ( n + 4 ) }$$
Edexcel FP2 2014 June Q2
2. Use algebra to find the set of values of \(x\) for which $$\left| 3 x ^ { 2 } - 19 x + 20 \right| < 2 x + 2$$
Edexcel FP2 2014 June Q3
3. $$y = \sqrt { 8 + \mathrm { e } ^ { x } } , \quad x \in \mathbb { R }$$ Find the series expansion for \(y\) in ascending powers of \(x\), up to and including the term in \(x ^ { 2 }\), giving each coefficient in its simplest form.
Edexcel FP2 2014 June Q4
4. (a) Use de Moivre's theorem to show that $$\cos 6 \theta = 32 \cos ^ { 6 } \theta - 48 \cos ^ { 4 } \theta + 18 \cos ^ { 2 } \theta - 1$$ (b) Hence solve for \(0 \leqslant \theta \leqslant \frac { \pi } { 2 }\) $$64 \cos ^ { 6 } \theta - 96 \cos ^ { 4 } \theta + 36 \cos ^ { 2 } \theta - 3 = 0$$ giving your answers as exact multiples of \(\pi\).
Edexcel FP2 2014 June Q5
  1. (a) Find the general solution of the differential equation
$$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + 2 \frac { \mathrm {~d} y } { \mathrm {~d} x } + 10 y = 27 \mathrm { e } ^ { - x }$$ (b) Find the particular solution that satisfies \(y = 0\) and \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 0\) when \(x = 0\)
Edexcel FP2 2014 June Q6
6. The transformation \(T\) from the \(z\)-plane, where \(z = x + \mathrm { i } y\), to the \(w\)-plane, where \(w = u + \mathrm { i } v\), is given by $$w = \frac { 4 ( 1 - \mathrm { i } ) z - 8 \mathrm { i } } { 2 ( - 1 + \mathrm { i } ) z - \mathrm { i } } , \quad z \neq \frac { 1 } { 4 } - \frac { 1 } { 4 } \mathrm { i }$$ The transformation \(T\) maps the points on the line \(l\) with equation \(y = x\) in the \(z\)-plane to a circle \(C\) in the \(w\)-plane.
  1. Show that $$w = \frac { a x ^ { 2 } + b x i + c } { 16 x ^ { 2 } + 1 }$$ where \(a\), \(b\) and \(c\) are real constants to be found.
  2. Hence show that the circle \(C\) has equation $$( u - 3 ) ^ { 2 } + v ^ { 2 } = k ^ { 2 }$$ where \(k\) is a constant to be found.
Edexcel FP2 2014 June Q7
7. (a) Show that the substitution \(v = y ^ { - 3 }\) transforms the differential equation $$x \frac { \mathrm {~d} y } { \mathrm {~d} x } + y = 2 x ^ { 4 } y ^ { 4 }$$ into the differential equation $$\begin{aligned} & \frac { \mathrm { d } v } { \mathrm {~d} x } - \frac { 3 v } { x } = - 6 x ^ { 3 }
& \text { ration (II), find a general solution of differential equation (I) } \end{aligned}$$ in the form \(y ^ { 3 } = \mathrm { f } ( x )\).
Edexcel FP2 2014 June Q8
8. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{c21767d7-7331-47f7-8e59-06a0727c67c5-13_771_1036_260_593} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} Figure 1 shows a sketch of part of the curve \(C\) with polar equation $$r = 1 + \tan \theta , \quad 0 \leqslant \theta < \frac { \pi } { 2 }$$ The tangent to the curve \(C\) at the point \(P\) is perpendicular to the initial line.
  1. Find the polar coordinates of the point \(P\). The point \(Q\) lies on the curve \(C\), where \(\theta = \frac { \pi } { 3 }\)
    The shaded region \(R\) is bounded by \(O P , O Q\) and the curve \(C\), as shown in Figure 1
  2. Find the exact area of \(R\), giving your answer in the form $$\frac { 1 } { 2 } ( \ln p + \sqrt { q } + r )$$ where \(p , q\) and \(r\) are integers to be found.
Edexcel FP2 2015 June Q1
  1. (a) Use algebra to find the set of values of \(x\) for which
$$x + 2 > \frac { 12 } { x + 3 }$$ (b) Hence, or otherwise, find the set of values of \(x\) for which $$x + 2 > \frac { 12 } { | x + 3 | }$$
Edexcel FP2 2015 June Q2
2. $$z = - 2 + ( 2 \sqrt { 3 } ) \mathrm { i }$$
  1. Find the modulus and the argument of \(z\). Using de Moivre's theorem,
  2. find \(z ^ { 6 }\), simplifying your answer,
  3. find the values of \(w\) such that \(w ^ { 4 } = z ^ { 3 }\), giving your answers in the form \(a + \mathrm { i } b\) where \(a , b \in \mathbb { R }\).
Edexcel FP2 2015 June Q3
  1. Find, in the form \(y = \mathrm { f } ( x )\), the general solution of the differential equation
$$\tan x \frac { \mathrm {~d} y } { \mathrm {~d} x } + y = 3 \cos 2 x \tan x , \quad 0 < x < \frac { \pi } { 2 }$$
Edexcel FP2 2015 June Q4
4. (a) Show that $$r ^ { 2 } ( r + 1 ) ^ { 2 } - ( r - 1 ) ^ { 2 } r ^ { 2 } \equiv 4 r ^ { 3 }$$ Given that \(\sum _ { r = 1 } ^ { n } r = \frac { 1 } { 2 } n ( n + 1 )\)
(b) use the identity in (a) and the method of differences to show that $$\left( 1 ^ { 3 } + 2 ^ { 3 } + 3 ^ { 3 } + \ldots + n ^ { 3 } \right) = ( 1 + 2 + 3 + \ldots + n ) ^ { 2 }$$
Edexcel FP2 2015 June Q5
  1. A transformation \(T\) from the \(z\)-plane to the \(w\)-plane is given by
$$w = \frac { z } { z + 3 \mathrm { i } } , \quad z \neq - 3 \mathrm { i }$$ The circle with equation \(| z | = 2\) is mapped by \(T\) onto the curve \(C\).
    1. Show that \(C\) is a circle.
    2. Find the centre and radius of \(C\). The region \(| z | \leqslant 2\) in the \(z\)-plane is mapped by \(T\) onto the region \(R\) in the \(w\)-plane.
  1. Shade the region \(R\) on an Argand diagram.
Edexcel FP2 2015 June Q6
6. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{49da3c56-ccd1-4599-95d8-d1395461bcca-11_451_1063_237_438} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} The curve \(C\), shown in Figure 1, has polar equation $$r = 3 a ( 1 + \cos \theta ) , \quad 0 \leqslant \theta < \pi$$ The tangent to \(C\) at the point \(A\) is parallel to the initial line.
  1. Find the polar coordinates of \(A\). The finite region \(R\), shown shaded in Figure 1, is bounded by the curve \(C\), the initial line and the line \(O A\).
  2. Use calculus to find the area of the shaded region \(R\), giving your answer in the form \(a ^ { 2 } ( p \pi + q \sqrt { 3 } )\), where \(p\) and \(q\) are rational numbers.
Edexcel FP2 2015 June Q7
7. $$y = \tan ^ { 2 } x , \quad - \frac { \pi } { 2 } < x < \frac { \pi } { 2 }$$
  1. Show that \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } = 6 \sec ^ { 4 } x - 4 \sec ^ { 2 } x\)
  2. Hence show that \(\frac { \mathrm { d } ^ { 3 } y } { \mathrm {~d} x ^ { 3 } } = 8 \sec ^ { 2 } x \tan x \left( A \sec ^ { 2 } x + B \right)\), where \(A\) and \(B\) are constants to be found.
  3. Find the Taylor series expansion of \(\tan ^ { 2 } x\), in ascending powers of \(\left( x - \frac { \pi } { 3 } \right)\), up to and including the term in \(\left( x - \frac { \pi } { 3 } \right) ^ { 3 }\)