| Exam Board | Edexcel |
| Module | FP2 (Further Pure Mathematics 2) |
| Year | 2014 |
| Session | June |
| Topic | First order differential equations (integrating factor) |
3. (a) Find the general solution of the differential equation
$$\frac { \mathrm { d } y } { \mathrm {~d} x } + 2 y \tan x = \mathrm { e } ^ { 4 x } \cos ^ { 2 } x , \quad - \frac { \pi } { 2 } < x < \frac { \pi } { 2 }$$
giving your answer in the form \(y = \mathrm { f } ( x )\).
(b) Find the particular solution for which \(y = 1\) at \(x = 0\)