| Exam Board | Edexcel |
| Module | FP2 (Further Pure Mathematics 2) |
| Year | 2014 |
| Session | June |
| Topic | First order differential equations (integrating factor) |
7. (a) Show that the substitution \(v = y ^ { - 3 }\) transforms the differential equation
$$x \frac { \mathrm {~d} y } { \mathrm {~d} x } + y = 2 x ^ { 4 } y ^ { 4 }$$
into the differential equation
$$\begin{aligned}
& \frac { \mathrm { d } v } { \mathrm {~d} x } - \frac { 3 v } { x } = - 6 x ^ { 3 }
& \text { ration (II), find a general solution of differential equation (I) }
\end{aligned}$$
in the form \(y ^ { 3 } = \mathrm { f } ( x )\).