Edexcel FP2 2014 June — Question 7

Exam BoardEdexcel
ModuleFP2 (Further Pure Mathematics 2)
Year2014
SessionJune
TopicFirst order differential equations (integrating factor)

7. (a) Show that the substitution \(v = y ^ { - 3 }\) transforms the differential equation $$x \frac { \mathrm {~d} y } { \mathrm {~d} x } + y = 2 x ^ { 4 } y ^ { 4 }$$ into the differential equation $$\begin{aligned} & \frac { \mathrm { d } v } { \mathrm {~d} x } - \frac { 3 v } { x } = - 6 x ^ { 3 }
& \text { ration (II), find a general solution of differential equation (I) } \end{aligned}$$ in the form \(y ^ { 3 } = \mathrm { f } ( x )\).