| Exam Board | Edexcel |
| Module | FP2 (Further Pure Mathematics 2) |
| Year | 2014 |
| Session | June |
| Topic | Complex numbers 2 |
4. (a) Use de Moivre's theorem to show that
$$\cos 6 \theta = 32 \cos ^ { 6 } \theta - 48 \cos ^ { 4 } \theta + 18 \cos ^ { 2 } \theta - 1$$
(b) Hence solve for \(0 \leqslant \theta \leqslant \frac { \pi } { 2 }\)
$$64 \cos ^ { 6 } \theta - 96 \cos ^ { 4 } \theta + 36 \cos ^ { 2 } \theta - 3 = 0$$
giving your answers as exact multiples of \(\pi\).