| Exam Board | Edexcel |
| Module | FP2 (Further Pure Mathematics 2) |
| Year | 2014 |
| Session | June |
| Topic | Complex numbers 2 |
7. (a) Use de Moivre's theorem to show that
$$\sin 5 \theta \equiv 16 \sin ^ { 5 } \theta - 20 \sin ^ { 3 } \theta + 5 \sin \theta$$
(b) Hence find the five distinct solutions of the equation
$$16 x ^ { 5 } - 20 x ^ { 3 } + 5 x + \frac { 1 } { 2 } = 0$$
giving your answers to 3 decimal places where necessary.
(c) Use the identity given in (a) to find
$$\int _ { 0 } ^ { \frac { \pi } { 4 } } \left( 4 \sin ^ { 5 } \theta - 5 \sin ^ { 3 } \theta \right) \mathrm { d } \theta$$
expressing your answer in the form \(a \sqrt { } 2 + b\), where \(a\) and \(b\) are rational numbers.