Questions — Edexcel FP2 (291 questions)

Browse by board
AQA AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further AS Paper 1 Further AS Paper 2 Discrete Further AS Paper 2 Mechanics Further AS Paper 2 Statistics Further Paper 1 Further Paper 2 Further Paper 3 Discrete Further Paper 3 Mechanics Further Paper 3 Statistics M1 M2 M3 Paper 1 Paper 2 Paper 3 S1 S2 S3 CAIE FP1 FP2 Further Paper 1 Further Paper 2 Further Paper 3 Further Paper 4 M1 M2 P1 P2 P3 S1 S2 Edexcel AEA AS Paper 1 AS Paper 2 C1 C12 C2 C3 C34 C4 CP AS CP1 CP2 D1 D2 F1 F2 F3 FD1 FD1 AS FD2 FD2 AS FM1 FM1 AS FM2 FM2 AS FP1 FP1 AS FP2 FP2 AS FP3 FS1 FS1 AS FS2 FS2 AS M1 M2 M3 M4 M5 P1 P2 P3 P4 PMT Mocks Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 OCR AS Pure C1 C2 C3 C4 D1 D2 FD1 AS FM1 AS FP1 FP1 AS FP2 FP3 FS1 AS Further Additional Pure Further Additional Pure AS Further Discrete Further Discrete AS Further Mechanics Further Mechanics AS Further Pure Core 1 Further Pure Core 2 Further Pure Core AS Further Statistics Further Statistics AS H240/01 H240/02 H240/03 M1 M2 M3 M4 Mechanics 1 PURE Pure 1 S1 S2 S3 S4 Stats 1 OCR MEI AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further Extra Pure Further Mechanics A AS Further Mechanics B AS Further Mechanics Major Further Mechanics Minor Further Numerical Methods Further Pure Core Further Pure Core AS Further Pure with Technology Further Statistics A AS Further Statistics B AS Further Statistics Major Further Statistics Minor M1 M2 M3 M4 Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 SPS SPS ASFM SPS ASFM Mechanics SPS ASFM Pure SPS ASFM Statistics SPS FM SPS FM Mechanics SPS FM Pure SPS FM Statistics SPS SM SPS SM Mechanics SPS SM Pure SPS SM Statistics WJEC Further Unit 1 Further Unit 2 Further Unit 3 Further Unit 4 Further Unit 5 Further Unit 6 Unit 1 Unit 2 Unit 3 Unit 4
Edexcel FP2 2005 June Q11
11. The variable \(y\) satisfies the differential equation $$4 \left( 1 + x ^ { 2 } \right) \frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + 4 x \frac { \mathrm {~d} y } { \mathrm {~d} x } = y$$ At \(x = 0 , y = 1\) and \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { 1 } { 2 }\).
  1. Find the value of \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\) at \(x = 0\).
    (1) (c) Find the value of \(\frac { \mathrm { d } ^ { 3 } y } { \mathrm {~d} x ^ { 3 } }\) at \(x = 0\)
  2. Express \(y\) as a series, in ascending powers of \(x\), up to and including the term in \(x ^ { 3 }\).
  3. Find the value that the series gives for \(y\) at \(x = 0.1\), giving your answer to 5 decimal places.
    (1)(Total 14 marks)
Edexcel FP2 2006 June Q1
  1. Given that \(3 x \sin 2 x\) is a particular integral of the differential equation
$$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + 4 y = k \cos 2 x$$ where \(k\) is a constant,
  1. calculate the value of \(k\),
  2. find the particular solution of the differential equation for which at \(x = 0 , y = 2\), and for which at \(x = \frac { \pi } { 4 } , y = \frac { \pi } { 2 }\).
    (4)(Total 8 marks)
Edexcel FP2 2006 June Q2
2. Given that for all real values of \(r , \quad ( 2 r + 1 ) ^ { 3 } - ( 2 r - 1 ) ^ { 3 } = A r ^ { 2 } + B\), where \(A\) and \(B\) are constants,
  1. find the value of \(A\) and the value of \(B\).
  2. Hence, or otherwise, prove that \(\sum _ { r = 1 } ^ { n } r ^ { 2 } = \frac { 1 } { 6 } n ( n + 1 ) ( 2 n + 1 )\).
  3. Calculate \(\sum _ { r = 1 } ^ { 40 } ( 3 r - 1 ) ^ { 2 }\).
    (3)(Total 10 marks)
Edexcel FP2 2006 June Q3
3. (a) Use algebra to find the exact solutions of the equation $$\left| 2 x ^ { 2 } + x - 6 \right| = 6 - 3 x$$ (b) On the same diagram, sketch the curve with equation \(y = \left| 2 x ^ { 2 } + x - 6 \right|\) and the line with equation \(y = 6 - 3 x\).
(c) Find the set of values of \(x\) for which $$\left| 2 x ^ { 2 } + x - 6 \right| > 6 - 3 x$$ (3)(Total 12 marks)
Edexcel FP2 2006 June Q4
4. During an industrial process, the mass of salt, \(S \mathrm {~kg}\), dissolved in a liquid \(t\) minutes after the process begins is modelled by the differential equation $$\frac { \mathrm { d } S } { \mathrm {~d} t } + \frac { 2 S } { 120 - t } = \frac { 1 } { 4 } , \quad 0 \leq t < 120$$ Given that \(S = 6\) when \(t = 0\),
  1. find \(S\) in terms of \(t\),
  2. calculate the maximum mass of salt that the model predicts will be dissolved in the liquid at any one time during the process.
    (4)(Total 12 marks)
Edexcel FP2 2006 June Q5
5. (a) Find the Taylor expansion of \(\cos 2 x\) in ascending powers of \(\left( x - \frac { \pi } { 4 } \right)\) up to and including the term in \(\left( x - \frac { \pi } { 4 } \right) ^ { 5 }\).
(b) Use your answer to (a) to obtain an estimate of \(\cos 2\), giving your answer to 6 decimal places.
(3)(Total 8 marks)
Edexcel FP2 2006 June Q6
6. (a) Use de Moivre's theorem to show that \(\boldsymbol { \operatorname { s i n } } 5 \boldsymbol { \theta } = \boldsymbol { \operatorname { s i n } } \boldsymbol { \theta } \left( \mathbf { 1 6 } \mathbf { c o s } ^ { 4 } \boldsymbol { \theta } - \mathbf { 1 2 } \boldsymbol { \operatorname { c o s } } ^ { 2 } \boldsymbol { \theta } + \mathbf { 1 } \right)\).
(b) Hence, or otherwise, solve, for \(0 \leq \theta < \pi\) $$\sin 5 \theta + \cos \theta \sin 2 \theta = 0$$ (6)(Total 11 marks)
Edexcel FP2 2006 June Q7
7. $$\frac { \mathrm { d } ^ { 2 x } } { \mathrm {~d} t ^ { 2 } } + 3 \sin x = 0 . \quad \text { At } t = 0 , \quad x = 0 \quad \text { and } \quad \frac { \mathrm { d } x } { \mathrm {~d} t } = 0.4$$ (b) Find a series solution for \(x\), in ascending powers of \(t\), up to and including the term in \(t ^ { 3 }\).
(c) Use your answer to (b) to obtain an estimate of \(x\) at \(t = 0.3\).
(2)(Total 11 marks)
Edexcel FP2 2006 June Q8
8. The point \(P\) represents a complex number \(z\) on an Argand diagram, where $$| z - 6 + 3 i | = 3 | z + 2 - i |$$
  1. Show that the locus of \(P\) is a circle, giving the coordinates of the centre and the radius of this circle. The point \(Q\) represents a complex number \(z\) on an Argand diagram, where $$\tan [ \arg ( z + 6 ) ] = \frac { 1 } { 2 }$$
  2. On the same Argand diagram, sketch the locus of \(P\) and the locus of \(Q\).
  3. On your diagram, shade the region which satisfies both $$| z - 6 + 3 \mathrm { i } | > 3 | z + 2 - \mathrm { i } | \text { and } \tan [ \arg ( z + 6 ) ] > \frac { 1 } { 2 }$$ (2)(Total 14 marks)
Edexcel FP2 2007 June Q1
  1. Obtain the general solution of the differential equation
$$x \frac { \mathrm {~d} y } { \mathrm {~d} x } + 2 y = \cos x , \quad x > 0$$ giving your answer in the form \(y = \mathrm { f } ( x )\).
(Total 8 marks)
Edexcel FP2 2007 June Q2
2.
\includegraphics[max width=\textwidth, alt={}, center]{d6befd60-de40-41b6-8ae5-48656dbca40c-1_734_1228_888_479} The diagram above shows a sketch of the curve with equation $$y = \frac { x ^ { 2 } - 1 } { | x + 2 | } , \quad x \neq - 2$$ The curve crosses the \(x\)-axis at \(x = 1\) and \(x = - 1\) and the line \(x = - 2\) is an asymptote of the curve.
  1. Use algebra to solve the equation \(\frac { x ^ { 2 } - 1 } { | x + 2 | } = 3 ( 1 - x )\).
  2. Hence, or otherwise, find the set of values of \(x\) for which $$\frac { x ^ { 2 } - 1 } { | x + 2 | } < 3 ( 1 - x )$$ (Total 9 marks)
Edexcel FP2 2007 June Q3
3. A scientist is modelling the amount of a chemical in the human bloodstream. The amount \(x\) of the chemical, measured in \(\mathrm { mg } l ^ { - 1 }\), at time \(t\) hours satisfies the differential equation $$2 x \frac { \mathrm {~d} ^ { 2 } x } { \mathrm {~d} t ^ { 2 } } - 6 \left( \frac { \mathrm { dx } } { \mathrm { dt } } \right) ^ { 2 } = x ^ { 2 } - 3 x ^ { 4 } , \quad x > 0$$
  1. Show that the substitution \(\mathrm { y } = \frac { 1 } { x ^ { 2 } }\) transforms this differential equation into $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} t ^ { 2 } } + y = 3$$
  2. Find the general solution of differential equation \(I\). Given that at time \(t = 0 , x = \frac { 1 } { 2 }\) and \(\frac { \mathrm { d } x } { \mathrm {~d} t } = 0\),
  3. find an expression for \(x\) in terms of \(t\),
  4. write down the maximum value of \(x\) as \(t\) varies.
Edexcel FP2 2007 June Q4
4.
\includegraphics[max width=\textwidth, alt={}, center]{d6befd60-de40-41b6-8ae5-48656dbca40c-3_535_1027_276_577} The diagram above shows a sketch of the curve \(C\) with polar equation $$r = 4 \sin \theta \cos ^ { 2 } \theta , \quad 0 \leq \theta < \frac { \pi } { 2 }$$ The tangent to \(C\) at the point \(P\) is perpendicular to the initial line.
  1. Show that \(P\) has polar coordinates \(\left( \frac { 3 } { 2 } , \frac { \pi } { 6 } \right)\). The point \(Q\) on \(C\) has polar coordinates \(\left( \sqrt { 2 } , \frac { \pi } { 4 } \right)\).
    The shaded region \(R\) is bounded by \(O P , O Q\) and \(C\), as shown in the diagram above.
  2. Show that the area of \(R\) is given by $$\int _ { \frac { \pi } { 6 } } ^ { \frac { \pi } { 4 } } \left( \sin ^ { 2 } 2 \theta \cos 2 \theta + \frac { 1 } { 2 } - \frac { 1 } { 2 } \cos 4 \theta \right) \mathrm { d } \theta$$
  3. Hence, or otherwise, find the area of \(R\), giving your answer in the form \(a + b \pi\), where \(a\) and \(b\) are rational numbers.
    (Total 14 marks)
Edexcel FP2 2007 June Q5
5. Find the set of values of \(x\) for which $$\frac { x + 1 } { 2 x - 3 } < \frac { 1 } { x - 3 }$$
Edexcel FP2 2007 June Q6
6. $$\frac { \mathrm { d } y } { \mathrm {~d} x } - y \tan x = 2 \sec ^ { 3 } x$$ Given that \(y = 3\) at \(x = 0\), find \(y\) in terms of \(x\)
(Total 7 marks)
Edexcel FP2 2007 June Q7
7. For the differential equation $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + 3 \frac { \mathrm {~d} y } { \mathrm {~d} x } + 2 y = 2 x ( x + 3 )$$ find the solution for which at \(x = 0 , \frac { \mathrm {~d} y } { \mathrm {~d} x } = 1\) and \(y = 1\).
(Total 12 marks)
Edexcel FP2 2007 June Q8
8. (a) Sketch the curve \(C\) with polar equation $$r = 5 + \sqrt { 3 } \cos \theta , \quad 0 \leq \theta \leq 2 \pi$$ (b) Find the polar coordinates of the points where the tangents to \(C\) are parallel to the initial line \(\theta = 0\). Give your answers to 3 significant figures where appropriate.
(c) Using integration, find the area enclosed by the curve \(C\), giving your answer in terms of \(\pi\).
Edexcel FP2 2007 June Q9
9. $$\frac { \mathrm { d } y } { \mathrm {~d} x } = y \mathrm { e } ^ { x ^ { 2 } } .$$ It is given that \(y = 0.2\) at \(x = 0\).
  1. Use the approximation \(\frac { y _ { 1 } - y _ { 0 } } { h } \approx \left( \frac { \mathrm {~d} y } { \mathrm {~d} x } \right) _ { 0 }\), with \(h = 0.1\), to obtain an estimate of the value of \(y\) at \(x = 0.1\).
  2. Use your answer to part (a) and the approximation \(\frac { y _ { 2 } - y _ { 0 } } { 2 h } \approx \left( \frac { \mathrm {~d} y } { \mathrm {~d} x } \right) _ { 1 }\), with \(h = 0.1\), to obtain an estimate of the value of \(y\) at \(x = 0.2\). Gives your answer to 4 decimal places.
    (Total 5 marks)
Edexcel FP2 2007 June Q10
10. $$\left( 1 - x ^ { 2 } \right) \frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } - x \frac { \mathrm {~d} y } { \mathrm {~d} x } + 2 y = 0$$ At \(x = 0 , y = 2\) and \(\frac { \mathrm { d } y } { \mathrm {~d} x } = - 1\).
  1. Find the value of \(\frac { \mathrm { d } ^ { 3 } y } { \mathrm {~d} x ^ { 3 } }\) at \(x = 0\).
  2. Express \(y\) as a series in ascending powers of \(x\), up to and including the term in \(x ^ { 3 }\).
    (Total 7 marks)
Edexcel FP2 2007 June Q11
11. (a) Given that \(z = \cos \theta + \mathrm { i } \sin \theta\), use de Moivre's theorem to show that $$z ^ { n } + \frac { 1 } { z ^ { n } } = 2 \cos n \theta$$ (b) Express \(32 \cos ^ { 6 } \theta\) in the form \(p \cos 6 \theta + q \cos 4 \theta + r \cos 2 \theta + \mathrm { s }\), where \(p , q , r\) and \(s\) are integers.
(c) Hence find the exact value of $$\int _ { 0 } ^ { \frac { \pi } { 3 } } \cos ^ { 6 } \theta \mathrm {~d} \theta$$
Edexcel FP2 2007 June Q12
  1. The transformation \(T\) from the \(z\)-plane, where \(z = x + \mathrm { i } y\), to the \(w\)-plane, where \(w = u + \mathrm { i } v\), is given by
$$w = \frac { z + \mathrm { i } } { \mathrm { z } } , \quad z \neq 0 .$$
  1. The transformation \(T\) maps the points on the line with equation \(y = x\) in the \(z\)-plane, other than \(( 0,0 )\), to points on a line \(l\) in the \(w\)-plane. Find a cartesian equation of \(l\).
  2. Show that the image, under \(T\), of the line with equation \(x + y + 1 = 0\) in the \(z\)-plane is a circle \(C\) in the \(w\)-plane, where \(C\) has cartesian equation $$u ^ { 2 } + v ^ { 2 } - u + v = 0$$
  3. On the same Argand diagram, sketch \(l\) and \(C\).
Edexcel FP2 2009 June Q1
  1. Express \(\frac { 1 } { r ( r + 2 ) }\) in partial fractions.
  2. Hence show that \(\sum _ { r = 1 } ^ { n } \frac { 4 } { r ( r + 2 ) } = \frac { n ( 3 n + 5 ) } { ( n + 1 ) ( n + 2 ) }\).
Edexcel FP2 2009 June Q3
3. Find the general solution of the differential equation $$\sin x \frac { \mathrm {~d} y } { \mathrm {~d} x } - y \cos x = \sin 2 x \sin x$$ giving your answer in the form \(y = \mathrm { f } ( x )\).
Edexcel FP2 2009 June Q4
4. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{0626e500-8ae5-4c98-82bb-a4536de11bf9-05_428_803_233_577} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} Figure 1 shows a sketch of the curve with polar equation $$r = a + 3 \cos \theta , \quad a > 0 , \quad 0 \leqslant \theta < 2 \pi$$ The area enclosed by the curve is \(\frac { 107 } { 2 } \pi\).
Find the value of \(a\).
Edexcel FP2 2009 June Q5
5. $$y = \sec ^ { 2 } x$$
  1. Show that \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } = 6 \sec ^ { 4 } x - 4 \sec ^ { 2 } x\).
  2. Find a Taylor series expansion of \(\sec ^ { 2 } x\) in ascending powers of \(\left( x - \frac { \pi } { 4 } \right)\), up to and including the term in \(\left( x - \frac { \pi } { 4 } \right) ^ { 3 }\).