| Exam Board | Edexcel |
| Module | FP2 (Further Pure Mathematics 2) |
| Year | 2006 |
| Session | June |
| Topic | Complex numbers 2 |
6. (a) Use de Moivre's theorem to show that \(\boldsymbol { \operatorname { s i n } } 5 \boldsymbol { \theta } = \boldsymbol { \operatorname { s i n } } \boldsymbol { \theta } \left( \mathbf { 1 6 } \mathbf { c o s } ^ { 4 } \boldsymbol { \theta } - \mathbf { 1 2 } \boldsymbol { \operatorname { c o s } } ^ { 2 } \boldsymbol { \theta } + \mathbf { 1 } \right)\).
(b) Hence, or otherwise, solve, for \(0 \leq \theta < \pi\)
$$\sin 5 \theta + \cos \theta \sin 2 \theta = 0$$
(6)(Total 11 marks)