Edexcel FP2 2005 June — Question 11

Exam BoardEdexcel
ModuleFP2 (Further Pure Mathematics 2)
Year2005
SessionJune
TopicTaylor series
TypeImplicit differential equation series solution

11. The variable \(y\) satisfies the differential equation $$4 \left( 1 + x ^ { 2 } \right) \frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + 4 x \frac { \mathrm {~d} y } { \mathrm {~d} x } = y$$ At \(x = 0 , y = 1\) and \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { 1 } { 2 }\).
  1. Find the value of \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\) at \(x = 0\).
    (1) (c) Find the value of \(\frac { \mathrm { d } ^ { 3 } y } { \mathrm {~d} x ^ { 3 } }\) at \(x = 0\)
  2. Express \(y\) as a series, in ascending powers of \(x\), up to and including the term in \(x ^ { 3 }\).
  3. Find the value that the series gives for \(y\) at \(x = 0.1\), giving your answer to 5 decimal places.
    (1)(Total 14 marks)