Edexcel FP2 2006 June — Question 2

Exam BoardEdexcel
ModuleFP2 (Further Pure Mathematics 2)
Year2006
SessionJune
TopicSequences and series, recurrence and convergence

2. Given that for all real values of \(r , \quad ( 2 r + 1 ) ^ { 3 } - ( 2 r - 1 ) ^ { 3 } = A r ^ { 2 } + B\), where \(A\) and \(B\) are constants,
  1. find the value of \(A\) and the value of \(B\).
  2. Hence, or otherwise, prove that \(\sum _ { r = 1 } ^ { n } r ^ { 2 } = \frac { 1 } { 6 } n ( n + 1 ) ( 2 n + 1 )\).
  3. Calculate \(\sum _ { r = 1 } ^ { 40 } ( 3 r - 1 ) ^ { 2 }\).
    (3)(Total 10 marks)