5.
\begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{3f8492ef-c576-4642-b75f-1735387e11ba-06_828_1091_228_422}
\captionsetup{labelformat=empty}
\caption{Figure 1}
\end{figure}
Figure 1 shows a rectangular hyperbola \(H\) with parametric equations
$$x = 3 t , \quad y = \frac { 3 } { t } , \quad t \neq 0$$
The line \(L\) with equation \(6 y = 4 x - 15\) intersects \(H\) at the point \(P\) and at the point \(Q\) as shown in Figure 1.
- Show that \(L\) intersects \(H\) where \(4 t ^ { 2 } - 5 t - 6 = 0\)
- Hence, or otherwise, find the coordinates of points \(P\) and \(Q\).