Edexcel FP1 2012 June — Question 9

Exam BoardEdexcel
ModuleFP1 (Further Pure Mathematics 1)
Year2012
SessionJune
TopicMatrices

9. $$\mathbf { M } = \left( \begin{array} { r r } 3 & 4
2 & - 5 \end{array} \right)$$
  1. Find \(\operatorname { det } \mathbf { M }\). The transformation represented by \(\mathbf { M }\) maps the point \(S ( 2 a - 7 , a - 1 )\), where \(a\) is a constant, onto the point \(S ^ { \prime } ( 25 , - 14 )\).
  2. Find the value of \(a\). The point \(R\) has coordinates \(( 6,0 )\). Given that \(O\) is the origin,
  3. find the area of triangle \(O R S\). Triangle \(O R S\) is mapped onto triangle \(O R ^ { \prime } S ^ { \prime }\) by the transformation represented by \(\mathbf { M }\).
  4. Find the area of triangle \(O R ^ { \prime } S ^ { \prime }\). Given that $$\mathbf { A } = \left( \begin{array} { r r } 0 & - 1
    1 & 0 \end{array} \right)$$
  5. describe fully the single geometrical transformation represented by \(\mathbf { A }\). The transformation represented by \(\mathbf { A }\) followed by the transformation represented by \(\mathbf { B }\) is equivalent to the transformation represented by \(\mathbf { M }\).
  6. Find B.