| Exam Board | Edexcel |
| Module | FP1 (Further Pure Mathematics 1) |
| Year | 2013 |
| Session | June |
| Topic | Proof by induction |
8. (a) Prove by induction, that for \(n \in \mathbb { Z } ^ { + }\),
$$\sum _ { r = 1 } ^ { n } r ( 2 r - 1 ) = \frac { 1 } { 6 } n ( n + 1 ) ( 4 n - 1 )$$
(b) Hence, show that
$$\sum _ { r = n + 1 } ^ { 3 n } r ( 2 r - 1 ) = \frac { 1 } { 3 } n \left( a n ^ { 2 } + b n + c \right)$$
where \(a\), \(b\) and \(c\) are integers to be found.