2. (i)
$$\mathbf { A } = \left( \begin{array} { c c }
2 k + 1 & k
- 3 & - 5
\end{array} \right) , \quad \text { where } k \text { is a constant }$$
Given that
$$\mathbf { B } = \mathbf { A } + 3 \mathbf { I }$$
where \(\mathbf { I }\) is the \(2 \times 2\) identity matrix, find
- \(\mathbf { B }\) in terms of \(k\),
- the value of \(k\) for which \(\mathbf { B }\) is singular.
(ii) Given that
$$\mathbf { C } = \left( \begin{array} { r }
2
- 3