| Exam Board | Edexcel |
| Module | FP1 (Further Pure Mathematics 1) |
| Year | 2013 |
| Session | June |
| Topic | Sequences and series, recurrence and convergence |
7. (a) Use the standard results for \(\sum _ { r = 1 } ^ { n } r ^ { 2 }\) and \(\sum _ { r = 1 } ^ { n } r ^ { 3 }\) to show that
$$\sum _ { r = 1 } ^ { n } r ^ { 2 } ( r - 1 ) = \frac { n ( n + 1 ) ( 3 n + 2 ) ( n - 1 ) } { 12 }$$
for all positive integers \(n\).
(b) Hence find the sum of the series
$$10 ^ { 2 } \times 9 + 11 ^ { 2 } \times 10 + 12 ^ { 2 } \times 11 + \ldots + 50 ^ { 2 } \times 49$$