CAIE
FP1
2014
June
Q11
11 The line \(l _ { 1 }\) passes through the points \(A ( 2,3 , - 5 )\) and \(B ( 8,7 , - 13 )\). The line \(l _ { 2 }\) passes through the points \(C ( - 2,1,8 )\) and \(D ( 3 , - 1,4 )\). Find the shortest distance between the lines \(l _ { 1 }\) and \(l _ { 2 }\).
The plane \(\Pi _ { 1 }\) passes through the points \(A , B\) and \(D\). The plane \(\Pi _ { 2 }\) passes though the points \(A , C\) and \(D\). Find the acute angle between \(\Pi _ { 1 }\) and \(\Pi _ { 2 }\), giving your answer in degrees.
CAIE
FP1
2014
June
Q3
3
- 2
0
\end{array} \right) .$$
Show that \(\{ \mathbf { a } , \mathbf { b } , \mathbf { c } \}\) is a basis for \(\mathbb { R } ^ { 3 }\).
Express \(\mathbf { d }\) in terms of \(\mathbf { a } , \mathbf { b }\) and \(\mathbf { c }\).
2 Show that the difference between the squares of consecutive integers is an odd integer.
Find the sum to \(n\) terms of the series
$$\frac { 3 } { 1 ^ { 2 } \times 2 ^ { 2 } } + \frac { 5 } { 2 ^ { 2 } \times 3 ^ { 2 } } + \frac { 7 } { 3 ^ { 2 } \times 4 ^ { 2 } } + \ldots + \frac { 2 r + 1 } { r ^ { 2 } ( r + 1 ) ^ { 2 } } + \ldots$$
and deduce the sum to infinity of the series.
3 It is given that \(\phi ( n ) = 5 ^ { n } ( 4 n + 1 ) - 1\), for \(n = 1,2,3 , \ldots\). Prove, by mathematical induction, that \(\phi ( n )\) is divisible by 8 , for every positive integer \(n\).
CAIE
FP1
2014
June
Q9
9 Using the substitution \(u = \cos \theta\), or any other method, find \(\int \sin \theta \cos ^ { 2 } \theta d \theta\).
It is given that \(I _ { n } = \int _ { 0 } ^ { \frac { 1 } { 2 } \pi } \sin ^ { n } \theta \cos ^ { 2 } \theta \mathrm {~d} \theta\), for \(n \geqslant 0\). Show that, for \(n \geqslant 2\),
$$I _ { n } = \frac { n - 1 } { n + 2 } I _ { n - 2 }$$
Hence find the exact value of \(\int _ { 0 } ^ { \frac { 1 } { 2 } \pi } \sin ^ { 4 } \theta \cos ^ { 2 } \theta d \theta\).