| Exam Board | CAIE |
| Module | FP1 (Further Pure Mathematics 1) |
| Year | 2014 |
| Session | June |
| Topic | Invariant lines and eigenvalues and vectors |
9 The matrix \(\mathbf { M }\), where
$$\mathbf { M } = \left( \begin{array} { r r r }
- 2 & 2 & 2
2 & 1 & 2
- 3 & - 6 & - 7
\end{array} \right)$$
has an eigenvector \(\left( \begin{array} { r } 0
1
- 1 \end{array} \right)\). Find the corresponding eigenvalue.
It is given that if the eigenvalues of a general \(3 \times 3\) matrix \(\mathbf { A }\), where
$$\mathbf { A } = \left( \begin{array} { l l l }
a & b & c
d & e & f
g & h & i
\end{array} \right)$$
are \(\lambda _ { 1 } , \lambda _ { 2 }\) and \(\lambda _ { 3 }\) then
$$\lambda _ { 1 } + \lambda _ { 2 } + \lambda _ { 3 } = a + e + i$$
and the determinant of \(\mathbf { A }\) has the value \(\lambda _ { 1 } \lambda _ { 2 } \lambda _ { 3 }\).
Use these results to find the other two eigenvalues of the matrix \(\mathbf { M }\), and find corresponding eigenvectors.