| Exam Board | CAIE |
| Module | FP1 (Further Pure Mathematics 1) |
| Year | 2013 |
| Session | June |
| Topic | Complex Numbers Argand & Loci |
Show the cube roots of 1 on an Argand diagram.
Show that the two non-real cube roots can be expressed in the form \(\omega\) and \(\omega ^ { 2 }\), and find these cube roots in exact cartesian form \(x + i y\).
Evaluate the determinant
$$\left| \begin{array} { c c c }
1 & 3 \omega & 2 \omega ^ { 2 }
3 \omega ^ { 2 } & 2 & \omega
2 \omega & \omega ^ { 2 } & 3
\end{array} \right|$$
It is given that \(z = ( 4 \sqrt { } 3 ) \left( \cos \frac { 4 } { 3 } \pi + i \sin \frac { 4 } { 3 } \pi \right) - 4 \left( \cos \frac { 11 } { 6 } \pi + i \sin \frac { 11 } { 6 } \pi \right)\). Express \(z\) in the form \(r ( \cos \theta + \mathrm { i } \sin \theta )\), giving exact values for \(r\) and \(\theta\).
Hence find the cube roots of \(z\) in the form \(r ( \cos \theta + \mathrm { i } \sin \theta )\).