Matrices

145 questions · 20 question types identified

Sort by: Question count | Difficulty
Matrix arithmetic operations

Questions asking to compute sums, differences, or scalar multiples of matrices (e.g., 2A + B, A - 3I).

20 Easy -1.0
13.8% of questions
Show example »
1 The matrices \(\mathbf { A } , \mathbf { B }\) and \(\mathbf { C }\) are defined as follows: $$\mathbf { A } = \left( \begin{array} { l } 1
View full question →
Easiest question Easy -1.8 »
1 You are given that \(\mathbf { A } = \left( \begin{array} { l l } 4 & 3 \\ 1 & 2 \end{array} \right) , \mathbf { B } = \left( \begin{array} { r r } 2 & - 3 \\ 1 & 4 \end{array} \right) , \mathbf { C } = \left( \begin{array} { r r } 1 & - 1 \\ 0 & 2 \\ 0 & 1 \end{array} \right)\).
  1. Calculate, where possible, \(2 \mathbf { B } , \mathbf { A } + \mathbf { C } , \mathbf { C A }\) and \(\mathbf { A } - \mathbf { B }\).
  2. Show that matrix multiplication is not commutative.
View full question →
Hardest question Moderate -0.5 »
2 The matrices \(\mathbf { A }\) and \(\mathbf { B }\) are given by \(\mathbf { A } = \left( \begin{array} { r r } 3 & 4 \\ 2 & - 3 \end{array} \right)\) and \(\mathbf { B } = \left( \begin{array} { r r } 4 & 6 \\ 3 & - 5 \end{array} \right)\), and \(\mathbf { I }\) is the \(2 \times 2\) identity matrix. Given that \(p \mathbf { A } + q \mathbf { B } = \mathbf { I }\), find the values of the constants \(p\) and \(q\).
View full question →
Solving matrix equations for unknown matrix

Questions where a matrix equation like AX = B or XA = B must be solved to find the unknown matrix X.

16 Moderate -0.0
11.0% of questions
Show example »
8. $$\mathbf { A } = \left( \begin{array} { l l } 0 & 1 \\ 2 & 3 \end{array} \right)$$
  1. Show that \(\mathbf { A }\) is non-singular.
  2. Find \(\mathbf { B }\) such that \(\mathbf { B A } ^ { 2 } = \mathbf { A }\).
View full question →
Easiest question Moderate -0.8 »
2. The matrices \(\mathbf { A }\) and \(\mathbf { B }\) are such that \(\mathbf { A } = \left[ \begin{array} { c c } 2 & - 1 \\ 4 & - 7 \end{array} \right]\) and \(\mathbf { B } = \left[ \begin{array} { c c c } 2 & 0 & 9 \\ 4 & - 20 & 13 \end{array} \right]\).
  1. Find the inverse of \(\mathbf { A }\).
  2. Hence, find the matrix \(\mathbf { X }\), where \(\mathbf { A X } = \mathbf { B }\).
View full question →
Hardest question Standard +0.8 »
5. Two matrices \(\mathbf { A }\) and \(\mathbf { B }\) satisfy the equation $$\mathbf { A B } = \boldsymbol { I } + 2 \mathbf { A }$$ where \(\boldsymbol { I }\) is the identity matrix and \(\mathbf { B } = \left[ \begin{array} { c c } 3 & - 2 \\ - 4 & 8 \end{array} \right]\) \section*{Find \(\mathbf { A }\).} [BLANK PAGE]
View full question →
Properties of matrix operations

Questions asking to verify, prove, or disprove properties like commutativity, (AB)⁻¹ = B⁻¹A⁻¹, or (AB)^T = B^T A^T.

14 Moderate -0.2
9.7% of questions
Show example »
5 Given that \(\mathbf { A }\) and \(\mathbf { B }\) are non-singular square matrices, simplify $$\mathbf { A B } \left( \mathbf { A } ^ { - 1 } \mathbf { B } \right) ^ { - 1 } .$$
View full question →
Easiest question Easy -1.8 »
1. Matrices \(\mathbf { A }\) and \(\mathbf { B }\) are given by \(\mathbf { A } = \left( \begin{array} { r r } - 1 & 0 \\ 0 & 1 \end{array} \right)\) and \(\mathbf { B } = \left( \begin{array} { c c } \frac { 5 } { 13 } & - \frac { 12 } { 13 } \\ \frac { 12 } { 13 } & \frac { 5 } { 13 } \end{array} \right)\).
Use A and B to disprove the proposition: "Matrix multiplication is commutative".
View full question →
Hardest question Challenging +1.2 »
6 The set \(S\) consists of all non-singular \(2 \times 2\) real matrices \(\mathbf { A }\) such that \(\mathbf { A Q } = \mathbf { Q A }\), where $$\mathbf { Q } = \left( \begin{array} { l l } 1 & 1 \\ 0 & 1 \end{array} \right)$$
  1. Prove that each matrix \(\mathbf { A }\) must be of the form \(\left( \begin{array} { l l } a & b \\ 0 & a \end{array} \right)\).
  2. State clearly the restriction on the value of \(a\) such that \(\left( \begin{array} { l l } a & b \\ 0 & a \end{array} \right)\) is in \(S\).
  3. Prove that \(S\) is a group under the operation of matrix multiplication. (You may assume that matrix multiplication is associative.)
View full question →
Solving linear systems using matrices

Questions requiring the solution of simultaneous linear equations using matrix methods (inverse or otherwise).

13 Moderate -0.2
9.0% of questions
Show example »
1 Given that \(\mathbf { M } \binom { x } { y } = \binom { 1 } { 3 }\), where \(\mathbf { M } = \left( \begin{array} { r r } 4 & - 3 \\ 8 & 21 \end{array} \right)\), find \(x\) and \(y\).
View full question →
Easiest question Moderate -0.8 »
1
  1. Find the inverse of the matrix \(\mathbf { A } = \left( \begin{array} { l l } 4 & 3 \\ 1 & 2 \end{array} \right)\).
  2. Use this inverse to solve the simultaneous equations $$\begin{aligned} 4 x + 3 y & = 5 \\ x + 2 y & = - 4 \end{aligned}$$ showing your working clearly.
View full question →
Hardest question Standard +0.3 »
4 You are given the system of equations $$\begin{array} { r } a ^ { 2 } x - 2 y = 1 \\ x + b ^ { 2 } y = 3 \end{array}$$ where \(a\) and \(b\) are real numbers.
  1. Use a matrix method to find \(x\) and \(y\) in terms of \(a\) and \(b\).
  2. Explain why the method used in part (a) works for all values of \(a\) and \(b\).
View full question →
Singular matrix conditions

Questions asking to find parameter values that make a matrix singular (determinant equals zero).

12 Moderate -0.7
8.3% of questions
Show example »
1. $$\mathbf { M } = \left( \begin{array} { c c } x & x - 2 \\ 3 x - 6 & 4 x - 11 \end{array} \right)$$ Given that the matrix \(\mathbf { M }\) is singular, find the possible values of \(x\).
View full question →
Easiest question Easy -1.8 »
1 Which of the following matrices is singular?
Circle your answer. \(\left[ \begin{array} { l l } 1 & 0 \\ 0 & 1 \end{array} \right]\) \(\left[ \begin{array} { l l } 1 & 1 \\ 2 & 2 \end{array} \right]\) \(\left[ \begin{array} { l l } 0 & 1 \\ 1 & 0 \end{array} \right]\) \(\left[ \begin{array} { c c } 1 & - 2 \\ 1 & 2 \end{array} \right]\)
View full question →
Hardest question Standard +0.3 »
$$\mathbf { A } = \left( \begin{array} { r r } 5 k & 3 k - 1 \\ - 3 & k + 1 \end{array} \right) , \text { where } k \text { is a real constant. }$$ Given that \(\mathbf { A }\) is a singular matrix, find the possible values of \(k\).
(ii) $$\mathbf { B } = \left( \begin{array} { l l } 10 & 5 \\ - 3 & 3 \end{array} \right)$$ A triangle \(T\) is transformed onto a triangle \(T ^ { \prime }\) by the transformation represented by the matrix \(\mathbf { B }\). The vertices of triangle \(T ^ { \prime }\) have coordinates \(( 0,0 ) , ( - 20,6 )\) and \(( 10 c , 6 c )\), where \(c\) is a positive constant. The area of triangle \(T ^ { \prime }\) is 135 square units.
  1. Find the matrix \(\mathbf { B } ^ { - 1 }\)
  2. Find the coordinates of the vertices of the triangle \(T\), in terms of \(c\) where necessary.
  3. Find the value of \(c\).
View full question →
Matrix satisfying given equation

Questions where a matrix must satisfy a specific equation like A + A⁻¹ = I or A² = kI, requiring finding parameter values.

11 Standard +0.2
7.6% of questions
Show example »
3. $$\mathbf { A } = \left( \begin{array} { l l } 4 & - 2 \\ a & - 3 \end{array} \right)$$ where \(a\) is a real constant and \(a \neq 6\)
  1. Find \(\mathbf { A } ^ { - 1 }\) in terms of \(a\). Given that \(\mathbf { A } + 2 \mathbf { A } ^ { - 1 } = \mathbf { I }\), where \(\mathbf { I }\) is the \(2 \times 2\) identity matrix,
  2. find the value of \(a\).
View full question →
Easiest question Moderate -0.8 »
3
  1. You are given two matrices, \(\mathbf { A }\) and \(\mathbf { B }\), where $$\mathbf { A } = \left( \begin{array} { l l } 1 & 2 \\ 2 & 1 \end{array} \right) \text { and } \mathbf { B } = \left( \begin{array} { c c } - 1 & 2 \\ 2 & - 1 \end{array} \right)$$ Show that \(\mathbf { A B } = m \mathbf { I }\), where \(m\) is a constant to be determined.
  2. You are given two matrices, \(\mathbf { C }\) and \(\mathbf { D }\), where $$\mathbf { C } = \left( \begin{array} { r r r } 2 & 1 & 5 \\ 1 & 1 & 3 \\ - 1 & 2 & 2 \end{array} \right) \text { and } \mathbf { D } = \left( \begin{array} { r r r } - 4 & 8 & - 2 \\ - 5 & 9 & - 1 \\ 3 & - 5 & 1 \end{array} \right)$$ Show that \(\mathbf { C } ^ { - 1 } = k \mathbf { D }\) where \(k\) is a constant to be determined.
  3. The matrices \(\mathbf { E }\) and \(\mathbf { F }\) are given by \(\mathbf { E } = \left( \begin{array} { c c } k & k ^ { 2 } \\ 3 & 0 \end{array} \right)\) and \(\mathbf { F } = \binom { 2 } { k }\) where \(k\) is a constant. Determine any matrix \(\mathbf { F }\) for which \(\mathbf { E F } = \binom { - 2 k } { 6 }\).
View full question →
Hardest question Standard +0.8 »
3. $$\mathbf { A } = \left( \begin{array} { l l } 4 & - 2 \\ a & - 3 \end{array} \right)$$ where \(a\) is a real constant and \(a \neq 6\)
  1. Find \(\mathbf { A } ^ { - 1 }\) in terms of \(a\). Given that \(\mathbf { A } + 2 \mathbf { A } ^ { - 1 } = \mathbf { I }\), where \(\mathbf { I }\) is the \(2 \times 2\) identity matrix,
  2. find the value of \(a\).
View full question →
Matrix multiplication

Questions requiring multiplication of two or more matrices, including verifying products or finding AB, BA, or A².

11 Moderate -0.8
7.6% of questions
Show example »
2 The matrices \(\mathbf { A }\) and \(\mathbf { B }\) are given by \(\mathbf { A } = \left( \begin{array} { l l } 2 & 1 \\ 4 & 3 \end{array} \right)\) and \(\mathbf { B } = \left( \begin{array} { l l } 1 & 0 \\ 3 & 2 \end{array} \right)\). Find
  1. \(\mathbf { A B }\),
  2. \(\mathbf { B } ^ { - 1 } \mathbf { A } ^ { - 1 }\).
View full question →
Easiest question Easy -1.8 »
3 The matrices \(\mathbf { A }\) and \(\mathbf { B }\) are given by $$\mathbf { A } = \left[ \begin{array} { l l } 3 & 1 \\ 0 & 5 \end{array} \right] \quad \mathbf { B } = \left[ \begin{array} { l l } 0 & 4 \\ 7 & 1 \end{array} \right]$$ \section*{Calculate AB} Circle your answer.
[0pt] [1 mark] $$\left[ \begin{array} { l l } 3 & 5 \\ 7 & 6 \end{array} \right] \quad \left[ \begin{array} { c c } 0 & 20 \\ 21 & 12 \end{array} \right] \quad \left[ \begin{array} { l l } 0 & 4 \\ 0 & 5 \end{array} \right] \quad \left[ \begin{array} { c c } 7 & 13 \\ 35 & 5 \end{array} \right]$$
View full question →
Hardest question Moderate -0.3 »
6 The matrix \(\mathbf { A }\) is given by $$\mathbf { A } = \left[ \begin{array} { c c } 5 & 2 \\ - 3 & 4 \end{array} \right]$$ 6
  1. \(\quad\) Find \(\operatorname { det } \mathbf { A }\) 6
  2. Find \(\mathbf { A } ^ { - 1 }\) 6
  3. Given that \(\mathbf { A B } = \left[ \begin{array} { c c } 9 & 6 \\ 5 & 12 \end{array} \right]\) and \(\mathbf { M } = 2 \mathbf { A } + \mathbf { B }\) find the matrix \(\mathbf { M }\)
View full question →
Area transformation under matrices

Questions involving the effect of a matrix transformation on the area of a geometric figure.

10 Standard +0.0
6.9% of questions
Show example »
1 You are given the matrix \(\mathbf { M } = \left( \begin{array} { r r } 2 & 3 \\ - 2 & 1 \end{array} \right)\).
Find the inverse of \(\mathbf { M }\).
The transformation associated with \(\mathbf { M }\) is applied to a figure of area 2 square units. What is the area of the transformed figure?
View full question →
Easiest question Moderate -0.8 »
1 You are given the matrix \(\mathbf { M } = \left( \begin{array} { r r } 2 & 3 \\ - 2 & 1 \end{array} \right)\).
Find the inverse of \(\mathbf { M }\).
The transformation associated with \(\mathbf { M }\) is applied to a figure of area 2 square units. What is the area of the transformed figure?
View full question →
Hardest question Standard +0.3 »
3. $$\mathbf { A } = \left( \begin{array} { l l } 6 & 4 \\ 1 & 1 \end{array} \right)$$
  1. Show that \(\mathbf { A }\) is non-singular. The triangle \(R\) is transformed to the triangle \(S\) by the matrix \(\mathbf { A }\).
    Given that the area of triangle \(R\) is 10 square units,
  2. find the area of triangle \(S\). Given that $$\mathbf { B } = \mathbf { A } ^ { 4 }$$ and that the triangle \(R\) is transformed to the triangle \(T\) by the matrix \(\mathbf { B }\),
  3. find, without evaluating \(\mathbf { B }\), the area of triangle \(T\).
View full question →
Conditions for unique solution

Questions asking to determine parameter values for which a system of equations has or does not have a unique solution.

6 Standard +0.1
4.1% of questions
Show example »
3 By using the determinant of an appropriate matrix, find the values of \(k\) for which the simultaneous equations $$\begin{aligned} & k x + 8 y = 1 \\ & 2 x + k y = 3 \end{aligned}$$ do not have a unique solution.
View full question →
Matrix conformability and dimensions

Questions about whether matrices are conformable for addition or multiplication, or determining dimensions of resulting matrices.

5 Easy -1.6
3.4% of questions
Show example »
1 Tmall mt ad a ual ad ad a ma ad ctly Ty a mg a tagt \(l\) tam dc \(\quad t\) a mt tal tabl \(T d\) ad td - clld dctly \(t\) T cct ttut
bt t -
  1. tat t d at t cll $$\begin{array} { c c } \pi & \theta \\ \hline \pi & \theta \end{array}$$
  2. G tat \(t\) magtud \(t\) mul xcd by dug \(t\) cll - \(d t\) alu
View full question →
Non-singular matrix proof

Questions requiring proof that a matrix is non-singular for all or certain values of parameters.

5 Moderate -0.6
3.4% of questions
Show example »
1. $$\mathbf { M } = \left( \begin{array} { c c } 2 k + 1 & k \\ k + 7 & k + 4 \end{array} \right) \quad \text { where } k \text { is a constant }$$
  1. Show that \(\mathbf { M }\) is non-singular for all real values of \(k\).
  2. Determine \(\mathbf { M } ^ { - 1 }\) in terms of \(k\).
View full question →
Matrix powers and patterns

Questions involving computation of matrix powers (A^n) or proving formulas for matrix powers by induction.

4 Standard +0.7
2.8% of questions
Show example »
7. Prove that for all \(n \in \mathbb { N }\) $$\left( \begin{array} { c c } 3 & 4 i \\ i & - 1 \end{array} \right) ^ { n } = \left( \begin{array} { c c } 2 n + 1 & 4 n i \\ n i & 1 - 2 n \end{array} \right)$$ [BLANK PAGE]
View full question →
Applied matrix modeling problems

Questions requiring formulation and solution of real-world problems (populations, investments, production) using matrix equations.

3 Standard +0.5
2.1% of questions
Show example »
4
  1. Represent the linear programming problem below by an initial Simplex tableau. $$\begin{array} { l l } \text { Maximise } & P = 5 x - 4 y - 3 z , \\ \text { subject to } & 2 x - 3 y + 4 z \leqslant 10 , \\ & 6 x + 5 y + 4 z \leqslant 60 , \\ \text { and } & x \geqslant 0 , y \geqslant 0 , z \geqslant 0 . \end{array}$$
  2. Perform one iteration of the Simplex algorithm and write down the values of \(x , y , z\) and \(P\) that result from this iteration.
View full question →
Determinant calculation

Questions asking to find the determinant of a given matrix, possibly in terms of parameters.

3 Moderate -0.7
2.1% of questions
Show example »
1. $$\mathbf { A } = \left[ \begin{array} { l l } 2 & 3 \\ k & 1 \end{array} \right]$$
  1. Find \(\mathbf { A } ^ { - 1 }\)
  2. The determinant of \(\mathbf { A } ^ { 2 }\) is equal to 4 . Find the possible values of \(k\).
    [0pt] [BLANK PAGE]
View full question →
Geometric interpretation of matrices

Questions asking to describe or identify the geometric transformation represented by a given matrix.

2 Standard +0.3
1.4% of questions
Show example »
5 The matrices \(\mathbf { A }\) and \(\mathbf { B }\) are defined by $$\mathbf { A } = \left[ \begin{array} { c c } k & k \\ k & - k \end{array} \right] , \quad \mathbf { B } = \left[ \begin{array} { c c } - k & k \\ k & k \end{array} \right]$$ where \(k\) is a constant.
  1. Find, in terms of \(k\) :
    1. \(\mathbf { A } + \mathbf { B }\);
    2. \(\mathbf { A } ^ { 2 }\).
  2. Show that \(( \mathbf { A } + \mathbf { B } ) ^ { 2 } = \mathbf { A } ^ { 2 } + \mathbf { B } ^ { 2 }\).
  3. It is now given that \(k = 1\).
    1. Describe the geometrical transformation represented by the matrix \(\mathbf { A } ^ { 2 }\).
    2. The matrix \(\mathbf { A }\) represents a combination of an enlargement and a reflection. Find the scale factor of the enlargement and the equation of the mirror line of the reflection.
View full question →
Matrix inverse calculation

Questions requiring the calculation of the inverse of a 2×2 or 3×3 matrix, possibly in terms of parameters.

2 Moderate -0.6
1.4% of questions
Show example »
2 The matrix \(\mathbf { A }\) is given by \(\mathbf { A } = \left( \begin{array} { r r c } 2 & 1 & 2 \\ 1 & - 1 & 1 \\ 2 & 2 & a \end{array} \right)\).
  1. Show that \(\operatorname { det } \mathbf { A } = 6 - 3 a\).
  2. State the value of \(a\) for which \(\mathbf { A }\) is singular.
  3. Given that \(\mathbf { A }\) is non-singular find \(\mathbf { A } ^ { - 1 }\) in terms of \(a\).
View full question →
Complex number matrices

Questions involving matrices with complex number entries, including determinants and products.

1 Standard +0.8
0.7% of questions
Show example »
10
  1. Show that \(\operatorname { det } \mathbf { A } = a + \mathrm { i }\) where \(a\) is an integer to be determined. 10 Matrix A is given by 10
  2. Matrix B is given by $$\mathbf { B } = \left[ \begin{array} { c c } 14 - 2 \mathrm { i } & b \\ c & d \end{array} \right] \quad \text { and } \quad \mathbf { A B } = p$$ where \(b , c , d \in \mathbb { C }\) and \(p \in \mathbb { N }\) Find \(b , c , d\) and \(p\)
View full question →
Eigenvalues and diagonalization

Questions involving characteristic equations, eigenvalues, or finding matrices P and D such that A^n = PDP⁻¹.

0
0.0% of questions
Invariant lines of transformation

Questions requiring the determination of lines that remain invariant under a matrix transformation.

0
0.0% of questions
Show example »
6. The matrices \(\mathbf { A }\) and \(\mathbf { B }\) are given by \(= \left( \begin{array} { l l } 1 & a \\ 3 & 0 \end{array} \right)\) and \(\mathbf { B } = \left( \begin{array} { l l } 4 & 2 \\ 3 & 3 \end{array} \right)\).
  1. Find the value of a such that \(\mathbf { A B } = \mathbf { B A }\).
  2. Prove by counter example that matrix multiplication for \(2 \times 2\) matrices is not commutative.
  3. A triangle of area 4 square units is transformed by the matrix \(\mathbf { B }\). Find the area of the image of the triangle following this transformation.
  4. Find the equations of the invariant lines of the form \(y = m x\) for the transformation represented by matrix \(\mathbf { B }\).
    [0pt] [BLANK PAGE]
View full question →
Finding coordinates after transformation

Questions asking to find the coordinates of points or vertices after applying a matrix transformation or its inverse.

0
0.0% of questions
Unclassified

Questions not yet assigned to a type.

7
4.8% of questions
Show 7 unclassified »
2 Find the value of the constant \(k\) for which the system of equations $$\begin{aligned} 2 x - 3 y + 4 z & = 1 \\ 3 x - y & = 2 \\ x + 2 y + k z & = 1 \end{aligned}$$ does not have a unique solution. For this value of \(k\), solve the system of equations.
4
  1. Find the value of \(k\) for which the set of linear equations $$\begin{aligned} x + 3 y + k z & = 4 \\ 4 x - 2 y - 10 z & = - 5 \\ x + y + 2 z & = 1 \end{aligned}$$ has no unique solution.
  2. For this value of \(k\), find the set of possible solutions, giving your answer in the form $$\left( \begin{array} { c } x \\ y \\ z \end{array} \right) = \mathbf { a } + t \mathbf { b } ,$$ where \(\mathbf { a }\) and \(\mathbf { b }\) are vectors and \(t\) is a scalar.
2 The matrices \(\mathbf { A }\) and \(\mathbf { I }\) are given by \(\mathbf { A } = \left( \begin{array} { l l } 1 & 2 \\ 1 & 3 \end{array} \right)\) and \(\mathbf { I } = \left( \begin{array} { l l } 1 & 0 \\ 0 & 1 \end{array} \right)\) respectively.
  1. Find \(\mathbf { A } ^ { 2 }\) and verify that \(\mathbf { A } ^ { 2 } = 4 \mathbf { A } - \mathbf { I }\).
  2. Hence, or otherwise, show that \(\mathbf { A } ^ { - 1 } = 4 \mathbf { I } - \mathbf { A }\).
5 Find the value of \(a\) for which the system of equations $$\begin{aligned} & x - y + 2 z = 4 \\ & x + a y - 3 z = b \\ & x - y + 7 z = 13 \end{aligned}$$ where \(a\) and \(b\) are constants, has no unique solution. Taking \(a\) as the value just found,
  1. find the general solution in the case \(b = - 5\),
  2. interpret the situation geometrically in the case \(b \neq - 5\).
7 The linear transformation \(\mathrm { T } : \mathbb { R } ^ { 4 } \rightarrow \mathbb { R } ^ { 4 }\) is represented by the matrix \(\mathbf { M }\), where $$\mathbf { M } = \left( \begin{array} { r r r r } 1 & - 2 & - 3 & 1 \\ 3 & - 5 & - 7 & 7 \\ 5 & - 9 & - 13 & 9 \\ 7 & - 13 & - 19 & 11 \end{array} \right)$$ Find the rank of \(\mathbf { M }\) and a basis for the null space of T . The vector \(\left( \begin{array} { l } 1 \\ 2 \\ 3 \\ 4 \end{array} \right)\) is denoted by \(\mathbf { e }\). Show that there is a solution of the equation \(\mathbf { M x } = \mathbf { M e }\) of the form \(\mathbf { x } = \left( \begin{array} { c } a \\ b \\ - 1 \\ - 1 \end{array} \right)\), where the constants \(a\) and \(b\) are to be found.
5 The linear transformation \(\mathrm { T } : \mathbb { R } ^ { 4 } \rightarrow \mathbb { R } ^ { 4 }\) is represented by the matrix \(\mathbf { A }\), where $$\mathbf { A } = \left( \begin{array} { r r r r } 1 & 3 & 5 & 7 \\ 2 & 8 & 7 & 9 \\ 3 & 13 & 9 & 11 \\ 6 & 24 & 21 & 27 \end{array} \right)$$ Find
  1. the rank of \(\mathbf { A }\),
  2. a basis for the range space of T ,
  3. a basis for the null space of T .
1 You are given the matrix \(\mathbf { M } = \left( \begin{array} { r r } 2 & 3 \\ - 2 & 1 \end{array} \right)\).
Find the inverse of \(\mathbf { M }\).
The transformation associated with \(\mathbf { M }\) is applied to a figure of area 2 square units. What is the area of the transformed figure?