CAIE FP1 2017 June — Question 4

Exam BoardCAIE
ModuleFP1 (Further Pure Mathematics 1)
Year2017
SessionJune
PaperDownload PDF ↗
Mark schemeDownload PDF ↗
TopicMatrices

4
  1. Find the value of \(k\) for which the set of linear equations $$\begin{aligned} x + 3 y + k z & = 4 \\ 4 x - 2 y - 10 z & = - 5 \\ x + y + 2 z & = 1 \end{aligned}$$ has no unique solution.
  2. For this value of \(k\), find the set of possible solutions, giving your answer in the form $$\left( \begin{array} { c } x \\ y \\ z \end{array} \right) = \mathbf { a } + t \mathbf { b } ,$$ where \(\mathbf { a }\) and \(\mathbf { b }\) are vectors and \(t\) is a scalar.

4 (i) Find the value of $k$ for which the set of linear equations

$$\begin{aligned}
x + 3 y + k z & = 4 \\
4 x - 2 y - 10 z & = - 5 \\
x + y + 2 z & = 1
\end{aligned}$$

has no unique solution.\\

(ii) For this value of $k$, find the set of possible solutions, giving your answer in the form

$$\left( \begin{array} { c } 
x \\
y \\
z
\end{array} \right) = \mathbf { a } + t \mathbf { b } ,$$

where $\mathbf { a }$ and $\mathbf { b }$ are vectors and $t$ is a scalar.\\

\hfill \mbox{\textit{CAIE FP1 2017 Q4}}