Properties of matrix operations

Questions asking to verify, prove, or disprove properties like commutativity, (AB)⁻¹ = B⁻¹A⁻¹, or (AB)^T = B^T A^T.

14 questions · Moderate -0.2

Sort by: Default | Easiest first | Hardest first
OCR FP3 Specimen Q6
10 marks Challenging +1.2
6 The set \(S\) consists of all non-singular \(2 \times 2\) real matrices \(\mathbf { A }\) such that \(\mathbf { A Q } = \mathbf { Q A }\), where $$\mathbf { Q } = \left( \begin{array} { l l } 1 & 1 \\ 0 & 1 \end{array} \right)$$
  1. Prove that each matrix \(\mathbf { A }\) must be of the form \(\left( \begin{array} { l l } a & b \\ 0 & a \end{array} \right)\).
  2. State clearly the restriction on the value of \(a\) such that \(\left( \begin{array} { l l } a & b \\ 0 & a \end{array} \right)\) is in \(S\).
  3. Prove that \(S\) is a group under the operation of matrix multiplication. (You may assume that matrix multiplication is associative.)
OCR MEI FP1 2007 January Q9
13 marks Standard +0.3
9 Matrices \(\mathbf { M }\) and \(\mathbf { N }\) are given by \(\mathbf { M } = \left( \begin{array} { l l } 3 & 2 \\ 0 & 1 \end{array} \right)\) and \(\mathbf { N } = \left( \begin{array} { r r } 1 & - 3 \\ 1 & 4 \end{array} \right)\).
  1. Find \(\mathbf { M } ^ { - 1 }\) and \(\mathbf { N } ^ { - 1 }\).
  2. Find \(\mathbf { M N }\) and \(( \mathbf { M N } ) ^ { - \mathbf { 1 } }\). Verify that \(( \mathbf { M N } ) ^ { - 1 } = \mathbf { N } ^ { - 1 } \mathbf { M } ^ { - 1 }\).
  3. The result \(( \mathbf { P Q } ) ^ { - 1 } = \mathbf { Q } ^ { - 1 } \mathbf { P } ^ { - 1 }\) is true for any two \(2 \times 2\), non-singular matrices \(\mathbf { P }\) and \(\mathbf { Q }\). The first two lines of a proof of this general result are given below. Beginning with these two lines, complete the general proof. $$\begin{aligned} & ( \mathbf { P Q } ) ^ { - 1 } \mathbf { P Q } = \mathbf { I } \\ \Rightarrow & ( \mathbf { P Q } ) ^ { - 1 } \mathbf { P Q Q } \mathbf { Q } ^ { - 1 } = \mathbf { I Q } ^ { - 1 } \end{aligned}$$
OCR FP1 2009 January Q4
4 marks Standard +0.3
4 Given that \(\mathbf { A }\) and \(\mathbf { B }\) are \(2 \times 2\) non-singular matrices and \(\mathbf { I }\) is the \(2 \times 2\) identity matrix, simplify $$\mathbf { B } ( \mathbf { A B } ) ^ { - 1 } \mathbf { A } - \mathbf { I } .$$
OCR FP1 2011 January Q5
3 marks Moderate -0.8
5 Given that \(\mathbf { A }\) and \(\mathbf { B }\) are non-singular square matrices, simplify $$\mathbf { A B } \left( \mathbf { A } ^ { - 1 } \mathbf { B } \right) ^ { - 1 } .$$
AQA Further Paper 2 Specimen Q9
6 marks Standard +0.8
9 A student claims:
"Given any two non-zero square matrices, \(\mathbf { A }\) and \(\mathbf { B }\), then \(( \mathbf { A B } ) ^ { - 1 } = \mathbf { B } ^ { - 1 } \mathbf { A } ^ { - 1 }\) " 9
  1. Explain why the student's claim is incorrect giving a counter example.
    [0pt] [2 marks]
    9
  2. Refine the student's claim to make it fully correct.
    [0pt] [1 mark]
    9
  3. Prove that your answer to part (b) is correct.
    [0pt] [3 marks]
OCR Further Pure Core AS 2018 June Q6
7 marks Moderate -0.5
6 The matrices \(\mathbf { A }\) and \(\mathbf { B }\) are given by \(\mathbf { A } = \left( \begin{array} { r r } t & 6 \\ t & - 2 \end{array} \right)\) and \(\mathbf { B } = \left( \begin{array} { r r } 2 t & 4 \\ t & - 2 \end{array} \right)\) where \(t\) is a constant.
  1. Show that \(| \mathbf { A } | = | \mathbf { B } |\).
  2. Verify that \(| \mathbf { A B } | = | \mathbf { A } \| \mathbf { B } |\).
  3. Given that \(| \mathbf { A B } | = - 1\) explain what this means about the constant \(t\).
OCR Further Pure Core AS Specimen Q3
9 marks Moderate -0.8
3
  1. You are given two matrices, A and B, where $$\mathbf { A } = \left( \begin{array} { l l } 1 & 2 \\ 2 & 1 \end{array} \right) \text { and } \mathbf { B } = \left( \begin{array} { c c } - 1 & 2 \\ 2 & - 1 \end{array} \right)$$ Show that \(\mathbf { A B } = m \mathbf { I }\), where \(m\) is a constant to be determined.
  2. You are given two matrices, \(\mathbf { C }\) and \(\mathbf { D }\), where $$\mathbf { C } = \left( \begin{array} { r r r } 2 & 1 & 5 \\ 1 & 1 & 3 \\ - 1 & 2 & 2 \end{array} \right) \text { and } \mathbf { D } = \left( \begin{array} { r r r } - 4 & 8 & - 2 \\ - 5 & 9 & - 1 \\ 3 & - 5 & 1 \end{array} \right)$$ Show that \(\mathbf { C } ^ { - 1 } = k \mathbf { D }\) where \(k\) is a constant to be determined.
  3. The matrices \(\mathbf { E }\) and \(\mathbf { F }\) are given by \(\mathbf { E } = \left( \begin{array} { c c } k & k ^ { 2 } \\ 3 & 0 \end{array} \right)\) and \(\mathbf { F } = \binom { 2 } { k }\) where \(k\) is a constant. Determine any matrix \(\mathbf { F }\) for which \(\mathbf { E F } = \binom { - 2 k } { 6 }\).
AQA FP1 2008 June Q6
7 marks Moderate -0.5
6 The matrices \(\mathbf { A }\) and \(\mathbf { B }\) are given by $$\mathbf { A } = \left[ \begin{array} { l l } 0 & 2 \\ 2 & 0 \end{array} \right] , \quad \mathbf { B } = \left[ \begin{array} { r r } 2 & 0 \\ 0 & - 2 \end{array} \right]$$
  1. Calculate the matrix \(\mathbf { A B }\).
  2. Show that \(\mathbf { A } ^ { 2 }\) is of the form \(k \mathbf { I }\), where \(k\) is an integer and \(\mathbf { I }\) is the \(2 \times 2\) identity matrix.
  3. Show that \(( \mathbf { A B } ) ^ { 2 } \neq \mathbf { A } ^ { 2 } \mathbf { B } ^ { 2 }\).
OCR MEI Further Pure Core AS 2024 June Q2
5 marks Easy -1.2
2 The matrices \(\mathbf { A } , \mathbf { B }\) and \(\mathbf { C }\) are given by \(\mathbf { A } = \left( \begin{array} { r r } 1 & a \\ - 1 & 2 \end{array} \right) , \mathbf { B } = \left( \begin{array} { r r } 2 & 0 \\ 1 & - 1 \end{array} \right)\) and \(\mathbf { C } = \left( \begin{array} { r r } - 1 & 0 \\ 2 & 1 \end{array} \right)\), where \(a\) is
a constant. a constant.
  1. By multiplying out the matrices on both sides of the equation, verify that \(\mathbf { A } ( \mathbf { B C } ) = ( \mathbf { A B } ) \mathbf { C }\).
  2. State the property of matrix multiplication illustrated by this result.
OCR MEI Further Pure Core AS 2020 November Q6
8 marks Moderate -0.3
6 The matrices \(\mathbf { M }\) and \(\mathbf { N }\) are \(\left( \begin{array} { l l } \lambda & 2 \\ 2 & \lambda \end{array} \right)\) and \(\left( \begin{array} { c c } \mu & 1 \\ 1 & \mu \end{array} \right)\) respectively, where \(\lambda\) and \(\mu\) are constants.
  1. Investigate whether \(\mathbf { M }\) and \(\mathbf { N }\) are commutative under multiplication.
  2. You are now given that \(\mathbf { M N } = \mathbf { I }\).
    1. Write down a relationship between \(\operatorname { det } \mathbf { M }\) and \(\operatorname { det } \mathbf { N }\).
    2. Given that \(\lambda > 0\), find the exact values of \(\lambda\) and \(\mu\).
    3. Hence verify your answer to part (i).
OCR MEI Further Pure Core AS 2021 November Q4
5 marks Moderate -0.3
4 Anika thinks that, for two square matrices \(\mathbf { A }\) and \(\mathbf { B }\), the inverse of \(\mathbf { A B }\) is \(\mathbf { A } ^ { - 1 } \mathbf { B } ^ { - 1 }\). Her attempted proof of this is as follows. $$\begin{aligned} ( \mathbf { A B } ) \left( \mathbf { A } ^ { - 1 } \mathbf { B } ^ { - 1 } \right) & = \mathbf { A } \left( \mathbf { B A } ^ { - 1 } \right) \mathbf { B } ^ { - 1 } \\ & = \mathbf { A } \left( \mathbf { A } ^ { - 1 } \mathbf { B } \right) \mathbf { B } ^ { - 1 } \\ & = \left( \mathbf { A } \mathbf { A } ^ { - 1 } \right) \left( \mathbf { B B } ^ { - 1 } \right) \\ & = \mathbf { I } \times \mathbf { I } \\ & = \mathbf { I } \\ \text { Hence } ( \mathbf { A B } ) ^ { - 1 } & = \mathbf { A } ^ { - 1 } \mathbf { B } ^ { - 1 } \end{aligned}$$
  1. Explain the error in Anika's working.
  2. State the correct inverse of the matrix \(\mathbf { A B }\) and amend Anika's working to prove this.
AQA Further AS Paper 1 2020 June Q16
4 marks Easy -1.2
16
  1. Write down the product \(\mathbf { A A } ^ { - 1 }\) as a single matrix.
    [0pt] [1 mark]
    16
  2. \(\quad \mathbf { M }\) is a matrix such that \(\mathbf { M } = \mathbf { A B }\).
    Prove that \(\mathbf { M } ^ { - 1 } = \mathbf { B } ^ { - 1 } \mathbf { A } ^ { - 1 }\) [0pt] [3 marks]
    The polar equation of the circle \(C\) is Find, in terms of \(a\), the radius of \(C\). Fully justify your answer.
AQA Further AS Paper 1 Specimen Q4
8 marks Standard +0.3
4
  1. Find the value of \(k\) for which matrix \(\mathbf { A }\) is singular. 4
  2. Describe the transformation represented by matrix \(\mathbf { B }\). 4
    1. Given that \(\mathbf { A }\) and \(\mathbf { B }\) are both non-singular, verify that \(\mathbf { A } ^ { \mathbf { - 1 } } \mathbf { B } ^ { \mathbf { - 1 } } = ( \mathbf { B A } ) ^ { \mathbf { - 1 } }\).
      [0pt] [4 marks]
      4
  3. (ii) Prove the result \(\mathbf { M } ^ { - \mathbf { 1 } } \mathbf { N } ^ { - \mathbf { 1 } } = ( \mathbf { N M } ) ^ { - \mathbf { 1 } }\) for all non-singular square matrices \(\mathbf { M }\) and \(\mathbf { N }\) of the same size.
    [0pt] [4 marks]
AQA Further Paper 2 2023 June Q8
6 marks Standard +0.3
8
  1. Using the result $$( \mathbf { A B } ) ^ { \mathrm { T } } = \mathbf { B } ^ { \mathrm { T } } \mathbf { A } ^ { \mathrm { T } }$$ show that $$\left( \mathbf { A } ^ { - 1 } \right) ^ { \mathrm { T } } = \left( \mathbf { A } ^ { \mathrm { T } } \right) ^ { - 1 }$$ 8
  2. It is given that \(\mathbf { A } = \left[ \begin{array} { c c } 4 & 5 \\ - 1 & k \end{array} \right]\), where \(k\) is a real constant.
    8
    1. Find \(\left( \mathbf { A } ^ { - 1 } \right) ^ { \mathrm { T } }\), giving your answer in terms of \(k\) 8
  3. (ii) State the restriction on the possible values of \(k\)