Matrix conformability and dimensions

Questions about whether matrices are conformable for addition or multiplication, or determining dimensions of resulting matrices.

5 questions · Easy -1.6

Sort by: Default | Easiest first | Hardest first
CAIE FP2 2014 June Q1
Easy -1.8
1 Tmall mt ad a ual ad ad a ma ad ctly Ty a mg a tagt \(l\) tam dc \(\quad t\) a mt tal tabl \(T d\) ad td - clld dctly \(t\) T cct ttut
bt t -
  1. tat t d at t cll $$\begin{array} { c c } \pi & \theta \\ \hline \pi & \theta \end{array}$$
  2. G tat \(t\) magtud \(t\) mul xcd by dug \(t\) cll - \(d t\) alu
OCR Further Pure Core 2 2023 June Q1
8 marks Easy -1.3
1
  1. The matrix \(\mathbf { P }\) is given by \(\mathbf { P } = \left( \begin{array} { l l l l } 1 & 0 & - 2 & 2 \\ 4 & 2 & - 2 & 3 \end{array} \right)\).
    1. Write down the dimensions of \(\mathbf { P }\).
    2. Write down the transpose of \(\mathbf { P }\).
  2. The matrices \(\mathbf { Q } , \mathbf { R }\) and \(\mathbf { S }\) are given by \(\mathbf { Q } = \left( \begin{array} { l l } 1 & 2 \end{array} \right) , \mathbf { R } = \left( \begin{array} { r r } 3 & - 4 \\ 2 & 3 \end{array} \right)\) and \(\mathbf { S } = \left( \begin{array} { l l } 3 & - 2 \end{array} \right)\). Write down the sum of the two of these matrices which are conformable for addition.
  3. The dimensions of matrix \(\mathbf { A }\) are 4 by 5. The matrices \(\mathbf { A }\) and \(\mathbf { B }\) are conformable for multiplication so that the matrix \(\mathbf { C } = \mathbf { B A }\) can be formed. The matrix \(\mathbf { C }\) has 6 rows.
    1. Write down the number of columns that \(\mathbf { C }\) has.
    2. Write down the dimensions of \(\mathbf { B }\).
    3. Explain whether the matrix \(\mathbf { A B }\) can be formed.
  4. Find the value of \(c\) for which \(\left( \begin{array} { r r } - 2 & 3 \\ 6 & 10 \end{array} \right) \left( \begin{array} { r r } c & 5 \\ 10 & 13 \end{array} \right) = \left( \begin{array} { r r } c & 5 \\ 10 & 13 \end{array} \right) \left( \begin{array} { r r } - 2 & 3 \\ 6 & 10 \end{array} \right)\).
AQA Further AS Paper 1 2019 June Q1
1 marks Easy -2.5
1 Which of the following matrices is an identity matrix?
Circle your answer. $$\left[ \begin{array} { l l } 1 & 1 \\ 1 & 1 \end{array} \right] \quad \left[ \begin{array} { l l } 1 & 0 \\ 0 & 1 \end{array} \right] \quad \left[ \begin{array} { l l } 0 & 1 \\ 1 & 0 \end{array} \right] \quad \left[ \begin{array} { l l } 0 & 0 \\ 0 & 0 \end{array} \right]$$
OCR Further Pure Core AS 2019 June Q2
4 marks Easy -1.3
2 Matrices \(\mathbf { P }\) and \(\mathbf { Q }\) are given by \(\mathbf { P } = \left( \begin{array} { c c c } 1 & k & 0 \\ - 2 & 1 & 3 \end{array} \right)\) and \(\mathbf { Q } = ( ( 1 + k ) - 1 )\) where \(k\) is a constant.
Exactly one of statements A and B is true.
Statement A: \(\quad \mathbf { P }\) and \(\mathbf { Q }\) (in that order) are conformable for multiplication.
Statement B: \(\quad \mathbf { Q }\) and \(\mathbf { P }\) (in that order) are conformable for multiplication.
  1. State, with a reason, which one of A and B is true.
  2. Find either \(\mathbf { P Q }\) or \(\mathbf { Q P }\) in terms of \(k\).
OCR FP1 AS 2021 June Q1
4 marks Easy -1.3
1 Matrices \(\mathbf { P }\) and \(\mathbf { Q }\) are given by \(\mathbf { P } = \left( \begin{array} { c c c } 1 & k & 0 \\ - 2 & 1 & 3 \end{array} \right)\) and \(\mathbf { Q } = ( ( 1 + k ) - 1 )\) where \(k\) is a constant.
Exactly one of statements A and B is true.
Statement A: \(\quad \mathbf { P }\) and \(\mathbf { Q }\) (in that order) are conformable for multiplication.
Statement B: \(\quad \mathbf { Q }\) and \(\mathbf { P }\) (in that order) are conformable for multiplication.
  1. State, with a reason, which one of A and B is true.
  2. Find either \(\mathbf { P Q }\) or \(\mathbf { Q P }\) in terms of \(k\).