Determinant calculation

Questions asking to find the determinant of a given matrix, possibly in terms of parameters.

3 questions · Moderate -0.7

Sort by: Default | Easiest first | Hardest first
Edexcel F1 2022 January Q1
5 marks Moderate -0.8
1. $$\mathbf { M } = \left( \begin{array} { r r } 3 x & 7 \\ 4 x + 1 & 2 - x \end{array} \right)$$ Find the range of values of \(x\) for which the determinant of the matrix \(\mathbf { M }\) is positive.
VILV SIHI NI IIII M I ON OC
WIHW SIHI NI IIIIM I ON OC
WARV SIHI NI IIII M I ON OC
Edexcel FP1 2013 June Q1
5 marks Moderate -0.8
  1. \(\mathbf { M } = \left( \begin{array} { c c } a & 1 \\ 1 & 2 - a \end{array} \right)\), where \(a\) is a constant.
    1. Find det M in terms of \(a\).
      (2)
    A triangle \(T\) is transformed to \(T ^ { \prime }\) by the matrix M .
    Given that the area of \(T ^ { \prime }\) is 0 ,
  2. find the value of \(a\).
    (3)
AQA Further AS Paper 1 2020 June Q4
5 marks Moderate -0.5
4 The matrices \(\mathbf { A }\) and \(\mathbf { B }\) are such that $$\mathbf { A } = \left[ \begin{array} { c c c } 2 & a & 3 \\ 0 & - 2 & 1 \end{array} \right] \quad \text { and } \quad \mathbf { B } = \left[ \begin{array} { c c } 1 & - 3 \\ - 2 & 4 a \\ 0 & 5 \end{array} \right]$$ 4
  1. Find the product \(\mathbf { A B }\) in terms of \(a\).
    [0pt] [2 marks]
    4
  2. Find the determinant of \(\mathbf { A B }\) in terms of \(a\). \includegraphics[max width=\textwidth, alt={}, center]{86aa9e6f-261c-40d4-8271-a0dc560d8a72-04_31_31_513_367}
    "
    □ \(\quad \mathbf { A } = \left[ \begin{array} { c c c } 2 & a & 3 \\ 0 & - 2 & 1 \end{array} \right]\) and \(\quad \mathbf { B } = \left[ \begin{array} { c c } 1 & - 3 \\ - 2 & 4 a \\ 0 & 5 \end{array} \right]\) \(\mathbf { 4 }\) (a) Find the product \(\mathbf { A B }\) in terms of \(a\). 4
  3. Show that \(\mathbf { A B }\) is singular when \(a = - 1\)