Show that \(\operatorname { det } \mathbf { A } = a + \mathrm { i }\) where \(a\) is an integer to be determined.
10 Matrix A is given by
10
Matrix B is given by
$$\mathbf { B } = \left[ \begin{array} { c c }
14 - 2 \mathrm { i } & b
c & d
\end{array} \right] \quad \text { and } \quad \mathbf { A B } = p$$
where \(b , c , d \in \mathbb { C }\) and \(p \in \mathbb { N }\)
Find \(b , c , d\) and \(p\)