OCR MEI FP1 2006 January — Question 1

Exam BoardOCR MEI
ModuleFP1 (Further Pure Mathematics 1)
Year2006
SessionJanuary
TopicMatrices

1 You are given that \(\mathbf { A } = \left( \begin{array} { l l } 4 & 3
1 & 2 \end{array} \right) , \mathbf { B } = \left( \begin{array} { r r } 2 & - 3
1 & 4 \end{array} \right) , \mathbf { C } = \left( \begin{array} { r r } 1 & - 1
0 & 2
0 & 1 \end{array} \right)\).
  1. Calculate, where possible, \(2 \mathbf { B } , \mathbf { A } + \mathbf { C } , \mathbf { C A }\) and \(\mathbf { A } - \mathbf { B }\).
  2. Show that matrix multiplication is not commutative.