| Exam Board | OCR |
| Module | FP1 (Further Pure Mathematics 1) |
| Year | 2012 |
| Session | January |
| Topic | Matrices |
2 The matrices \(\mathbf { A }\) and \(\mathbf { B }\) are given by \(\mathbf { A } = \left( \begin{array} { r r } 3 & 4
2 & - 3 \end{array} \right)\) and \(\mathbf { B } = \left( \begin{array} { r r } 4 & 6
3 & - 5 \end{array} \right)\), and \(\mathbf { I }\) is the \(2 \times 2\) identity matrix. Given that \(p \mathbf { A } + q \mathbf { B } = \mathbf { I }\), find the values of the constants \(p\) and \(q\).