OCR FP1 — Question 2

Exam BoardOCR
ModuleFP1 (Further Pure Mathematics 1)
PaperDownload PDF ↗
Mark schemeDownload PDF ↗
TopicMatrices

2 The matrices \(\mathbf { A }\) and \(\mathbf { I }\) are given by \(\mathbf { A } = \left( \begin{array} { l l } 1 & 2 \\ 1 & 3 \end{array} \right)\) and \(\mathbf { I } = \left( \begin{array} { l l } 1 & 0 \\ 0 & 1 \end{array} \right)\) respectively.
  1. Find \(\mathbf { A } ^ { 2 }\) and verify that \(\mathbf { A } ^ { 2 } = 4 \mathbf { A } - \mathbf { I }\).
  2. Hence, or otherwise, show that \(\mathbf { A } ^ { - 1 } = 4 \mathbf { I } - \mathbf { A }\).

2 The matrices $\mathbf { A }$ and $\mathbf { I }$ are given by $\mathbf { A } = \left( \begin{array} { l l } 1 & 2 \\ 1 & 3 \end{array} \right)$ and $\mathbf { I } = \left( \begin{array} { l l } 1 & 0 \\ 0 & 1 \end{array} \right)$ respectively.\\
(i) Find $\mathbf { A } ^ { 2 }$ and verify that $\mathbf { A } ^ { 2 } = 4 \mathbf { A } - \mathbf { I }$.\\
(ii) Hence, or otherwise, show that $\mathbf { A } ^ { - 1 } = 4 \mathbf { I } - \mathbf { A }$.

\hfill \mbox{\textit{OCR FP1  Q2}}