| Exam Board | CAIE |
|---|---|
| Module | FP1 (Further Pure Mathematics 1) |
| Year | 2016 |
| Session | November |
| Paper | Download PDF ↗ |
| Mark scheme | Download PDF ↗ |
| Topic | Matrices |
5 The linear transformation $\mathrm { T } : \mathbb { R } ^ { 4 } \rightarrow \mathbb { R } ^ { 4 }$ is represented by the matrix $\mathbf { A }$, where
$$\mathbf { A } = \left( \begin{array} { r r r r }
1 & 3 & 5 & 7 \\
2 & 8 & 7 & 9 \\
3 & 13 & 9 & 11 \\
6 & 24 & 21 & 27
\end{array} \right)$$
Find\\
(i) the rank of $\mathbf { A }$,\\
(ii) a basis for the range space of T ,\\
(iii) a basis for the null space of T .
\hfill \mbox{\textit{CAIE FP1 2016 Q5}}