AQA FP1 2009 January — Question 5

Exam BoardAQA
ModuleFP1 (Further Pure Mathematics 1)
Year2009
SessionJanuary
TopicMatrices

5 The matrices \(\mathbf { A }\) and \(\mathbf { B }\) are defined by $$\mathbf { A } = \left[ \begin{array} { c c } k & k
k & - k \end{array} \right] , \quad \mathbf { B } = \left[ \begin{array} { c c } - k & k
k & k \end{array} \right]$$ where \(k\) is a constant.
  1. Find, in terms of \(k\) :
    1. \(\mathbf { A } + \mathbf { B }\);
    2. \(\mathbf { A } ^ { 2 }\).
  2. Show that \(( \mathbf { A } + \mathbf { B } ) ^ { 2 } = \mathbf { A } ^ { 2 } + \mathbf { B } ^ { 2 }\).
  3. It is now given that \(k = 1\).
    1. Describe the geometrical transformation represented by the matrix \(\mathbf { A } ^ { 2 }\).
    2. The matrix \(\mathbf { A }\) represents a combination of an enlargement and a reflection. Find the scale factor of the enlargement and the equation of the mirror line of the reflection.