AQA
Further AS Paper 1
2022
June
Q11
4 marks
Standard +0.8
11 Prove by induction that, for all integers \(n \geq 1\),
$$\left( \mathbf { A B A } ^ { - 1 } \right) ^ { n } = \mathbf { A B } ^ { n } \mathbf { A } ^ { - 1 }$$
where \(\mathbf { A }\) and \(\mathbf { B }\) are square matrices of equal dimensions, and \(\mathbf { A }\) is non-singular.