| Exam Board | Edexcel |
| Module | FP2 (Further Pure Mathematics 2) |
| Year | 2002 |
| Session | June |
| Topic | Second order differential equations |
7. (a) Find the general solution of the differential equation
$$2 \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} t ^ { 2 } } + 7 \frac { \mathrm {~d} y } { \mathrm {~d} t } + 3 y = 3 t ^ { 2 } + 11 t$$
(b) Find the particular solution of this differential equation for which \(y = 1\) and \(\frac { \mathrm { d } y } { \mathrm {~d} t } = 1\) when \(t = 0\).
(c) For this particular solution, calculate the value of \(y\) when \(t = 1\).