Edexcel FP2 2006 January — Question 7

Exam BoardEdexcel
ModuleFP2 (Further Pure Mathematics 2)
Year2006
SessionJanuary
TopicTaylor series
TypeExplicit differential equation series solution

7. $$( 1 + 2 x ) \frac { \mathrm { d } y } { \mathrm {~d} x } = x + 4 y ^ { 2 }$$
  1. Show that $$( 1 + 2 x ) \frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } = 1 + 2 ( 4 y - 1 ) \frac { \mathrm { d } y } { \mathrm {~d} x }$$
  2. Differentiate equation 1 with respect to \(x\) to obtain an equation involving $$\frac { \mathrm { d } ^ { 3 } } { \mathrm {~d} x ^ { 3 } } , \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } , \frac { \mathrm {~d} y } { \mathrm {~d} x } , \quad x \text { and } y .$$ Given that \(y = \frac { 1 } { 2 }\) at \(x = 0\),
  3. find a series solution for \(y\), in ascending powers of \(x\), up to and including the term in \(x ^ { 3 }\).
    (6)(Total 11 marks)