Edexcel FP2 2006 January — Question 8

Exam BoardEdexcel
ModuleFP2 (Further Pure Mathematics 2)
Year2006
SessionJanuary
TopicComplex Numbers Argand & Loci

8. In the Argand diagram the point \(P\) represents the complex number \(z\). Given that arg \(\left( \frac { z - 2 \mathrm { i } } { z + 2 } \right) = \frac { \pi } { 2 }\),
  1. sketch the locus of \(P\),
  2. deduce the value of \(| \mathrm { z } + 1 - \mathrm { i } |\). The transformation \(T\) from the \(z\)-plane to the \(w\)-plane is defined by $$w = \frac { 2 ( 1 + \mathrm { i } ) } { z + 2 } , \quad z \neq - 2$$
  3. Show that the locus of \(P\) in the \(z\)-plane is mapped to part of a straight line in the \(w\)-plane, and show this in an Argand diagram.
    (6)(Total 12 marks)