Questions FP1 (1385 questions)

Browse by board
AQA AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further AS Paper 1 Further AS Paper 2 Discrete Further AS Paper 2 Mechanics Further AS Paper 2 Statistics Further Paper 1 Further Paper 2 Further Paper 3 Discrete Further Paper 3 Mechanics Further Paper 3 Statistics M1 M2 M3 Paper 1 Paper 2 Paper 3 S1 S2 S3 CAIE FP1 FP2 Further Paper 1 Further Paper 2 Further Paper 3 Further Paper 4 M1 M2 P1 P2 P3 S1 S2 Edexcel AEA AS Paper 1 AS Paper 2 C1 C12 C2 C3 C34 C4 CP AS CP1 CP2 D1 D2 F1 F2 F3 FD1 FD1 AS FD2 FD2 AS FM1 FM1 AS FM2 FM2 AS FP1 FP1 AS FP2 FP2 AS FP3 FS1 FS1 AS FS2 FS2 AS M1 M2 M3 M4 M5 P1 P2 P3 P4 PMT Mocks Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 OCR AS Pure C1 C2 C3 C4 D1 D2 FD1 AS FM1 AS FP1 FP1 AS FP2 FP3 FS1 AS Further Additional Pure Further Additional Pure AS Further Discrete Further Discrete AS Further Mechanics Further Mechanics AS Further Pure Core 1 Further Pure Core 2 Further Pure Core AS Further Statistics Further Statistics AS H240/01 H240/02 H240/03 M1 M2 M3 M4 Mechanics 1 PURE Pure 1 S1 S2 S3 S4 Stats 1 OCR MEI AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further Extra Pure Further Mechanics A AS Further Mechanics B AS Further Mechanics Major Further Mechanics Minor Further Numerical Methods Further Pure Core Further Pure Core AS Further Pure with Technology Further Statistics A AS Further Statistics B AS Further Statistics Major Further Statistics Minor M1 M2 M3 M4 Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 SPS SPS ASFM SPS ASFM Mechanics SPS ASFM Pure SPS ASFM Statistics SPS FM SPS FM Mechanics SPS FM Pure SPS FM Statistics SPS SM SPS SM Mechanics SPS SM Pure SPS SM Statistics WJEC Further Unit 1 Further Unit 2 Further Unit 3 Further Unit 4 Further Unit 5 Further Unit 6 Unit 1 Unit 2 Unit 3 Unit 4
CAIE FP1 2016 November Q10
10 Let \(z = \cos \theta + \mathrm { i } \sin \theta\). Show that $$z ^ { n } + \frac { 1 } { z ^ { n } } = 2 \cos n \theta \quad \text { and } \quad z ^ { n } - \frac { 1 } { z ^ { n } } = 2 \mathrm { i } \sin n \theta$$ By considering \(\left( z - \frac { 1 } { z } \right) ^ { 4 } \left( z + \frac { 1 } { z } \right) ^ { 2 }\), show that $$\sin ^ { 4 } \theta \cos ^ { 2 } \theta = \frac { 1 } { 32 } ( \cos 6 \theta - 2 \cos 4 \theta - \cos 2 \theta + 2 ) .$$ Hence find the exact value of \(\int _ { 0 } ^ { \frac { 1 } { 4 } \pi } \sin ^ { 4 } \theta \cos ^ { 2 } \theta d \theta\).
[0pt] [Question 11 is printed on the next page.]
CAIE FP1 2016 November Q11 EITHER
The lines \(l _ { 1 }\) and \(l _ { 2 }\) have equations $$\mathbf { r } = 6 \mathbf { i } - 3 \mathbf { j } + s ( 3 \mathbf { i } - 4 \mathbf { j } - 2 \mathbf { k } ) \quad \text { and } \quad \mathbf { r } = 2 \mathbf { i } - \mathbf { j } - 4 \mathbf { k } + t ( \mathbf { i } - 3 \mathbf { j } - \mathbf { k } )$$ respectively. The point \(P\) on \(l _ { 1 }\) and the point \(Q\) on \(l _ { 2 }\) are such that \(P Q\) is perpendicular to both \(l _ { 1 }\) and \(l _ { 2 }\). Show that the position vector of \(P\) is \(3 \mathbf { i } + \mathbf { j } + 2 \mathbf { k }\) and find the position vector of \(Q\). Find, in the form \(\mathbf { r } = \mathbf { a } + \lambda \mathbf { b } + \mu \mathbf { c }\), an equation of the plane \(\Pi\) which passes through \(P\) and is perpendicular to \(l _ { 1 }\). The plane \(\Pi\) meets the plane \(\mathbf { r } = p \mathbf { i } + q \mathbf { j }\) in the line \(l _ { 3 }\). Find a vector equation of \(l _ { 3 }\).
CAIE FP1 2016 November Q11 OR
A curve \(C\) has parametric equations $$x = 1 - 3 t ^ { 2 } , \quad y = t \left( 1 - 3 t ^ { 2 } \right) , \quad \text { for } 0 \leqslant t \leqslant \frac { 1 } { \sqrt { 3 } }$$ Show that \(\left( \frac { \mathrm { d } x } { \mathrm {~d} t } \right) ^ { 2 } + \left( \frac { \mathrm { d } y } { \mathrm {~d} t } \right) ^ { 2 } = \left( 1 + 9 t ^ { 2 } \right) ^ { 2 }\). Hence find
  1. the arc length of \(C\),
  2. the surface area generated when \(C\) is rotated through \(2 \pi\) radians about the \(x\)-axis. Use the fact that \(t = \frac { y } { x }\) to find a cartesian equation of \(C\). Hence show that the polar equation of \(C\) is \(r = \sec \theta \left( 1 - 3 \tan ^ { 2 } \theta \right)\), and state the domain of \(\theta\). Find the area of the region enclosed between \(C\) and the initial line. \footnotetext{Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at \href{http://www.cie.org.uk}{www.cie.org.uk} after the live examination series. Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge. }
CAIE FP1 2017 November Q1
1 Find \(\sum _ { r = 1 } ^ { n } ( 4 r - 3 ) ( 4 r + 1 )\), giving your answer in its simplest form.
CAIE FP1 2017 November Q2
2 Find the general solution of the differential equation $$\frac { \mathrm { d } ^ { 2 } x } { \mathrm {~d} t ^ { 2 } } + 2 \frac { \mathrm {~d} x } { \mathrm {~d} t } + 5 x = 4 - 5 t ^ { 2 }$$
CAIE FP1 2017 November Q3
3
  1. Show that \(\frac { \mathrm { d } ^ { n + 1 } } { \mathrm {~d} x ^ { n + 1 } } \left( x ^ { n + 1 } \ln x \right) = \frac { \mathrm { d } ^ { n } } { \mathrm {~d} x ^ { n } } \left( x ^ { n } + ( n + 1 ) x ^ { n } \ln x \right)\).
  2. Prove by mathematical induction that, for all positive integers \(n\), $$\frac { \mathrm { d } ^ { n } } { \mathrm {~d} x ^ { n } } \left( x ^ { n } \ln x \right) = n ! \left( \ln x + 1 + \frac { 1 } { 2 } + \ldots + \frac { 1 } { n } \right)$$
CAIE FP1 2017 November Q4
4 The cubic equation \(2 x ^ { 3 } - 3 x ^ { 2 } + 4 x - 10 = 0\) has roots \(\alpha , \beta\) and \(\gamma\).
  1. Find the value of \(( \alpha + 1 ) ( \beta + 1 ) ( \gamma + 1 )\).
  2. Find the value of \(( \beta + \gamma ) ( \gamma + \alpha ) ( \alpha + \beta )\).
CAIE FP1 2017 November Q5
5 The curve \(C\) has equation \(2 x ^ { 3 } + 3 x ^ { 2 } y - 3 y ^ { 3 } - 16 = 0\).
  1. Find the coordinates of the point \(A\) on \(C\) at which \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 0\) and \(x \neq 0\).
  2. Find the value of \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\) at \(A\).
CAIE FP1 2017 November Q6
6 The points \(A , B\) and \(C\) have position vectors \(2 \mathbf { i } - \mathbf { j } + \mathbf { k } , 3 \mathbf { i } + 4 \mathbf { j } - \mathbf { k }\) and \(- \mathbf { i } + 2 \mathbf { j } + 4 \mathbf { k }\) respectively.
  1. Find the area of the triangle \(A B C\).
    ....................................................................................................................................
    \includegraphics[max width=\textwidth, alt={}]{9221f480-4af6-44be-a535-d2ceb0f8b5d2-08_72_1566_484_328} ................................................................................................................................... ....................................................................................................................................
    \includegraphics[max width=\textwidth, alt={}, center]{9221f480-4af6-44be-a535-d2ceb0f8b5d2-08_71_1563_772_331}
    \includegraphics[max width=\textwidth, alt={}, center]{9221f480-4af6-44be-a535-d2ceb0f8b5d2-08_71_1563_868_331}
  2. Find the perpendicular distance of the point \(A\) from the line \(B C\).
  3. Find the cartesian equation of the plane through \(A , B\) and \(C\).
CAIE FP1 2017 November Q7
7 The linear transformation \(\mathrm { T } : \mathbb { R } ^ { 4 } \rightarrow \mathbb { R } ^ { 4 }\) is represented by the matrix \(\mathbf { A }\), where $$\mathbf { A } = \left( \begin{array} { r r r r } 1 & - 1 & - 2 & 3
5 & - 3 & - 4 & 25
6 & - 4 & - 6 & 28
7 & - 5 & - 8 & 31 \end{array} \right)$$
  1. Find the rank of \(\mathbf { A }\) and a basis for the null space of T .
  2. Find the matrix product \(\mathbf { A } \left( \begin{array} { r } - 1
    1
    - 1
    1 \end{array} \right)\) and hence find the general solution of the equation \(\mathbf { A } \mathbf { x } = \left( \begin{array} { r } 3
    21
    24
    27 \end{array} \right)\).
    \(8 \quad\) Let \(I _ { n } = \int _ { 0 } ^ { \frac { 1 } { 4 } \pi } \sec ^ { n } x \mathrm {~d} x\) for \(n > 0\).
CAIE FP1 2017 November Q9
9 The curve \(C\) has equation $$y = \frac { 3 x - 9 } { ( x - 2 ) ( x + 1 ) }$$
  1. Find the equations of the asymptotes of \(C\).
    \includegraphics[max width=\textwidth, alt={}, center]{9221f480-4af6-44be-a535-d2ceb0f8b5d2-14_61_1566_513_328}
  2. Show that there is no point on \(C\) for which \(\frac { 1 } { 3 } < y < 3\).
  3. Find the coordinates of the turning points of \(C\).
  4. Sketch \(C\).
CAIE FP1 2017 November Q10
10
  1. Use de Moivre's theorem to show that $$\sin 5 \theta = 5 \sin \theta - 20 \sin ^ { 3 } \theta + 16 \sin ^ { 5 } \theta$$
  2. Hence explain why the roots of the equation \(16 x ^ { 4 } - 20 x ^ { 2 } + 5 = 0\) are \(x = \pm \sin \frac { 1 } { 5 } \pi\) and \(x = \pm \sin \frac { 2 } { 5 } \pi\).
  3. Without using a calculator, find the exact values of $$\sin \frac { 1 } { 5 } \pi \sin \frac { 2 } { 5 } \pi \sin \frac { 3 } { 5 } \pi \sin \frac { 4 } { 5 } \pi \quad \text { and } \quad \sin ^ { 2 } \left( \frac { 1 } { 5 } \pi \right) + \sin ^ { 2 } \left( \frac { 2 } { 5 } \pi \right) .$$
CAIE FP1 2017 November Q11 EITHER
  1. The vector \(\mathbf { e }\) is an eigenvector of the matrix \(\mathbf { A }\), with corresponding eigenvalue \(\lambda\), and is also an eigenvector of the matrix \(\mathbf { B }\), with corresponding eigenvalue \(\mu\). Show that \(\mathbf { e }\) is an eigenvector of the matrix \(\mathbf { A B }\) with corresponding eigenvalue \(\lambda \mu\).
  2. Find the eigenvalues and corresponding eigenvectors of the matrix \(\mathbf { A }\), where $$\mathbf { A } = \left( \begin{array} { r r r } 0 & 1 & 3
    3 & 2 & - 3
    1 & 1 & 2 \end{array} \right) .$$
  3. The matrix \(\mathbf { B }\), where $$\mathbf { B } = \left( \begin{array} { r r r } 3 & 6 & 1
    1 & - 2 & - 1
    6 & 6 & - 2 \end{array} \right) ,$$ has eigenvectors \(\left( \begin{array} { r } 1
    - 1
    0 \end{array} \right) , \left( \begin{array} { r } 1
    - 1
    1 \end{array} \right)\) and \(\left( \begin{array} { l } 1
    0
    1 \end{array} \right)\). Find the eigenvalues of the matrix \(\mathbf { A B }\), and state corresponding eigenvectors.
CAIE FP1 2017 November Q11 OR
The polar equation of a curve \(C\) is \(r = a ( 1 + \cos \theta )\) for \(0 \leqslant \theta < 2 \pi\), where \(a\) is a positive constant.
  1. Sketch \(C\).
  2. Show that the cartesian equation of \(C\) is $$x ^ { 2 } + y ^ { 2 } = a \left( x + \sqrt { } \left( x ^ { 2 } + y ^ { 2 } \right) \right)$$
  3. Find the area of the sector of \(C\) between \(\theta = 0\) and \(\theta = \frac { 1 } { 3 } \pi\).
  4. Find the arc length of \(C\) between the point where \(\theta = 0\) and the point where \(\theta = \frac { 1 } { 3 } \pi\).
CAIE FP1 2017 November Q6
6 The points \(A , B\) and \(C\) have position vectors \(2 \mathbf { i } - \mathbf { j } + \mathbf { k } , 3 \mathbf { i } + 4 \mathbf { j } - \mathbf { k }\) and \(- \mathbf { i } + 2 \mathbf { j } + 4 \mathbf { k }\) respectively.
  1. Find the area of the triangle \(A B C\).
    ....................................................................................................................................
    \includegraphics[max width=\textwidth, alt={}]{a0987277-06e9-451b-ae18-bb7de9e7661c-08_72_1566_484_328} .................................................................................................................................... ....................................................................................................................................
    \includegraphics[max width=\textwidth, alt={}, center]{a0987277-06e9-451b-ae18-bb7de9e7661c-08_71_1563_772_331}
    \includegraphics[max width=\textwidth, alt={}, center]{a0987277-06e9-451b-ae18-bb7de9e7661c-08_71_1563_868_331}
  2. Find the perpendicular distance of the point \(A\) from the line \(B C\).
  3. Find the cartesian equation of the plane through \(A , B\) and \(C\).
CAIE FP1 2017 November Q9
9 The curve \(C\) has equation $$y = \frac { 3 x - 9 } { ( x - 2 ) ( x + 1 ) }$$
  1. Find the equations of the asymptotes of \(C\).
    \includegraphics[max width=\textwidth, alt={}, center]{a0987277-06e9-451b-ae18-bb7de9e7661c-14_61_1566_513_328}
  2. Show that there is no point on \(C\) for which \(\frac { 1 } { 3 } < y < 3\).
  3. Find the coordinates of the turning points of \(C\).
  4. Sketch \(C\).
CAIE FP1 2017 November Q6
6 The points \(A , B\) and \(C\) have position vectors \(2 \mathbf { i } - \mathbf { j } + \mathbf { k } , 3 \mathbf { i } + 4 \mathbf { j } - \mathbf { k }\) and \(- \mathbf { i } + 2 \mathbf { j } + 4 \mathbf { k }\) respectively.
  1. Find the area of the triangle \(A B C\).
    ....................................................................................................................................
    \includegraphics[max width=\textwidth, alt={}]{68e31138-756a-433a-bf42-0fdfadad091e-08_72_1566_484_328} .................................................................................................................................... ....................................................................................................................................
    \includegraphics[max width=\textwidth, alt={}, center]{68e31138-756a-433a-bf42-0fdfadad091e-08_71_1563_772_331}
    \includegraphics[max width=\textwidth, alt={}, center]{68e31138-756a-433a-bf42-0fdfadad091e-08_71_1563_868_331}
  2. Find the perpendicular distance of the point \(A\) from the line \(B C\).
  3. Find the cartesian equation of the plane through \(A , B\) and \(C\).
CAIE FP1 2017 November Q9
9 The curve \(C\) has equation $$y = \frac { 3 x - 9 } { ( x - 2 ) ( x + 1 ) }$$
  1. Find the equations of the asymptotes of \(C\).
    \includegraphics[max width=\textwidth, alt={}, center]{68e31138-756a-433a-bf42-0fdfadad091e-14_61_1566_513_328}
  2. Show that there is no point on \(C\) for which \(\frac { 1 } { 3 } < y < 3\).
  3. Find the coordinates of the turning points of \(C\).
  4. Sketch \(C\).
CAIE FP1 2018 November Q1
1 The vectors \(\mathbf { a } , \mathbf { b } , \mathbf { c }\) and \(\mathbf { d }\) in \(\mathbb { R } ^ { 3 }\) are given by $$\mathbf { a } = \left( \begin{array} { l } 1
CAIE FP1 2018 November Q2
2
1 \end{array} \right) , \quad \mathbf { b } = \left( \begin{array} { l } 2
9
0 \end{array} \right) , \quad \mathbf { c } = \left( \begin{array} { l }
CAIE FP1 2018 November Q4
4 \end{array} \right) \quad \text { and } \quad \mathbf { d } = \left( \begin{array} { r } 0
- 8
3 \end{array} \right) .$$
  1. Show that \(\{ \mathbf { a } , \mathbf { b } , \mathbf { c } \}\) is a basis for \(\mathbb { R } ^ { 3 }\).
  2. Express \(\mathbf { d }\) in terms of \(\mathbf { a } , \mathbf { b }\) and \(\mathbf { c }\).
    2 The roots of the equation $$x ^ { 3 } + p x ^ { 2 } + q x + r = 0$$ are \(\alpha , 2 \alpha , 4 \alpha\), where \(p , q , r\) and \(\alpha\) are non-zero real constants.
  3. Show that $$2 p \alpha + q = 0$$
  4. Show that $$p ^ { 3 } r - q ^ { 3 } = 0$$ 3 The sequence of positive numbers \(u _ { 1 } , u _ { 2 } , u _ { 3 } , \ldots\) is such that \(u _ { 1 } < 3\) and, for \(n \geqslant 1\), $$u _ { n + 1 } = \frac { 4 u _ { n } + 9 } { u _ { n } + 4 }$$
  5. By considering \(3 - u _ { n + 1 }\), or otherwise, prove by mathematical induction that \(u _ { n } < 3\) for all positive integers \(n\).
  6. Show that \(u _ { n + 1 } > u _ { n }\) for \(n \geqslant 1\).
    4 A curve is defined parametrically by $$x = t - \frac { 1 } { 2 } \sin 2 t \quad \text { and } \quad y = \sin ^ { 2 } t$$ The arc of the curve joining the point where \(t = 0\) to the point where \(t = \pi\) is rotated through one complete revolution about the \(x\)-axis. The area of the surface generated is denoted by \(S\).
  7. Show that $$S = a \pi \int _ { 0 } ^ { \pi } \sin ^ { 3 } t \mathrm {~d} t$$ where the constant \(a\) is to be found.
  8. Using the result \(\sin 3 t = 3 \sin t - 4 \sin ^ { 3 } t\), find the exact value of \(S\).
CAIE FP1 2018 November Q5
5 It is given that \(\lambda\) is an eigenvalue of the matrix \(\mathbf { A }\) with \(\mathbf { e }\) as a corresponding eigenvector, and \(\mu\) is an eigenvalue of the matrix \(\mathbf { B }\) for which \(\mathbf { e }\) is also a corresponding eigenvector.
  1. Show that \(\lambda + \mu\) is an eigenvalue of the matrix \(\mathbf { A } + \mathbf { B }\) with \(\mathbf { e }\) as a corresponding eigenvector.
    The matrix \(\mathbf { A }\), given by $$\mathbf { A } = \left( \begin{array} { r r r } 2 & 0 & 1
    - 1 & 2 & 3
    1 & 0 & 2 \end{array} \right)$$ has \(\left( \begin{array} { l } 1
    2
    1 \end{array} \right) , \left( \begin{array} { r } 1
    4
    - 1 \end{array} \right)\) and \(\left( \begin{array} { l } 0
    1
    0 \end{array} \right)\) as eigenvectors.
  2. Find the corresponding eigenvalues.
    The matrix \(\mathbf { B }\) has eigenvalues 4, 5 and 1 with corresponding eigenvectors \(\left( \begin{array} { l } 1
    2
    1 \end{array} \right) , \left( \begin{array} { r } 1
    4
    - 1 \end{array} \right)\) and \(\left( \begin{array} { l } 0
    1
    0 \end{array} \right)\) respectively.
  3. Find a matrix \(\mathbf { P }\) and a diagonal matrix \(\mathbf { D }\) such that \(( \mathbf { A } + \mathbf { B } ) ^ { 3 } = \mathbf { P D P } ^ { - 1 }\).
CAIE FP1 2018 November Q6
6 The curve \(C\) has equation $$y = \frac { x ^ { 2 } + a x - 1 } { x + 1 }$$ where \(a\) is constant and \(a > 1\).
  1. Find the equations of the asymptotes of \(C\).
  2. Show that \(C\) intersects the \(x\)-axis twice.
  3. Justifying your answer, find the number of stationary points on \(C\).
  4. Sketch \(C\), stating the coordinates of its point of intersection with the \(y\)-axis.
CAIE FP1 2018 November Q7
7
  1. Use de Moivre's theorem to show that $$\sin 8 \theta = 8 \sin \theta \cos \theta \left( 1 - 10 \sin ^ { 2 } \theta + 24 \sin ^ { 4 } \theta - 16 \sin ^ { 6 } \theta \right) .$$
  2. Use the equation \(\frac { \sin 8 \theta } { \sin 2 \theta } = 0\) to find the roots of $$16 x ^ { 6 } - 24 x ^ { 4 } + 10 x ^ { 2 } - 1 = 0$$ in the form \(\sin k \pi\), where \(k\) is rational.
CAIE FP1 2018 November Q9
5 marks
9
0 \end{array} \right) , \quad \mathbf { c } = \left( \begin{array} { l } 3
3
4 \end{array} \right) \quad \text { and } \quad \mathbf { d } = \left( \begin{array} { r } 0
- 8
3 \end{array} \right) .$$
  1. Show that \(\{ \mathbf { a } , \mathbf { b } , \mathbf { c } \}\) is a basis for \(\mathbb { R } ^ { 3 }\).
  2. Express \(\mathbf { d }\) in terms of \(\mathbf { a } , \mathbf { b }\) and \(\mathbf { c }\).
    2 The roots of the equation $$x ^ { 3 } + p x ^ { 2 } + q x + r = 0$$ are \(\alpha , 2 \alpha , 4 \alpha\), where \(p , q , r\) and \(\alpha\) are non-zero real constants.
  3. Show that $$2 p \alpha + q = 0$$
  4. Show that $$p ^ { 3 } r - q ^ { 3 } = 0$$ 3 The sequence of positive numbers \(u _ { 1 } , u _ { 2 } , u _ { 3 } , \ldots\) is such that \(u _ { 1 } < 3\) and, for \(n \geqslant 1\), $$u _ { n + 1 } = \frac { 4 u _ { n } + 9 } { u _ { n } + 4 }$$
  5. By considering \(3 - u _ { n + 1 }\), or otherwise, prove by mathematical induction that \(u _ { n } < 3\) for all positive integers \(n\).
  6. Show that \(u _ { n + 1 } > u _ { n }\) for \(n \geqslant 1\).
    4 A curve is defined parametrically by $$x = t - \frac { 1 } { 2 } \sin 2 t \quad \text { and } \quad y = \sin ^ { 2 } t$$ The arc of the curve joining the point where \(t = 0\) to the point where \(t = \pi\) is rotated through one complete revolution about the \(x\)-axis. The area of the surface generated is denoted by \(S\).
  7. Show that $$S = a \pi \int _ { 0 } ^ { \pi } \sin ^ { 3 } t \mathrm {~d} t$$ where the constant \(a\) is to be found.
  8. Using the result \(\sin 3 t = 3 \sin t - 4 \sin ^ { 3 } t\), find the exact value of \(S\).
    5 It is given that \(\lambda\) is an eigenvalue of the matrix \(\mathbf { A }\) with \(\mathbf { e }\) as a corresponding eigenvector, and \(\mu\) is an eigenvalue of the matrix \(\mathbf { B }\) for which \(\mathbf { e }\) is also a corresponding eigenvector.
  9. Show that \(\lambda + \mu\) is an eigenvalue of the matrix \(\mathbf { A } + \mathbf { B }\) with \(\mathbf { e }\) as a corresponding eigenvector.
    The matrix \(\mathbf { A }\), given by $$\mathbf { A } = \left( \begin{array} { r r r } 2 & 0 & 1
    - 1 & 2 & 3
    1 & 0 & 2 \end{array} \right)$$ has \(\left( \begin{array} { l } 1
    2
    1 \end{array} \right) , \left( \begin{array} { r } 1
    4
    - 1 \end{array} \right)\) and \(\left( \begin{array} { l } 0
    1
    0 \end{array} \right)\) as eigenvectors.
  10. Find the corresponding eigenvalues.
    The matrix \(\mathbf { B }\) has eigenvalues 4, 5 and 1 with corresponding eigenvectors \(\left( \begin{array} { l } 1
    2
    1 \end{array} \right) , \left( \begin{array} { r } 1
    4
    - 1 \end{array} \right)\) and \(\left( \begin{array} { l } 0
    1
    0 \end{array} \right)\) respectively.
  11. Find a matrix \(\mathbf { P }\) and a diagonal matrix \(\mathbf { D }\) such that \(( \mathbf { A } + \mathbf { B } ) ^ { 3 } = \mathbf { P D P } ^ { - 1 }\).
    6 The curve \(C\) has equation $$y = \frac { x ^ { 2 } + a x - 1 } { x + 1 }$$ where \(a\) is constant and \(a > 1\).
  12. Find the equations of the asymptotes of \(C\).
  13. Show that \(C\) intersects the \(x\)-axis twice.
  14. Justifying your answer, find the number of stationary points on \(C\).
  15. Sketch \(C\), stating the coordinates of its point of intersection with the \(y\)-axis. 7
  16. Use de Moivre's theorem to show that $$\sin 8 \theta = 8 \sin \theta \cos \theta \left( 1 - 10 \sin ^ { 2 } \theta + 24 \sin ^ { 4 } \theta - 16 \sin ^ { 6 } \theta \right) .$$
  17. Use the equation \(\frac { \sin 8 \theta } { \sin 2 \theta } = 0\) to find the roots of $$16 x ^ { 6 } - 24 x ^ { 4 } + 10 x ^ { 2 } - 1 = 0$$ in the form \(\sin k \pi\), where \(k\) is rational.
    8 The plane \(\Pi _ { 1 }\) has equation $$\mathbf { r } = \left( \begin{array} { l } 5
    1
    0 \end{array} \right) + s \left( \begin{array} { r } - 4
    1
    3 \end{array} \right) + t \left( \begin{array} { l } 0
    1
    2 \end{array} \right)$$
  18. Find a cartesian equation of \(\Pi _ { 1 }\).
    The plane \(\Pi _ { 2 }\) has equation \(3 x + y - z = 3\).
  19. Find the acute angle between \(\Pi _ { 1 }\) and \(\Pi _ { 2 }\), giving your answer in degrees.
  20. Find an equation of the line of intersection of \(\Pi _ { 1 }\) and \(\Pi _ { 2 }\), giving your answer in the form \(\mathbf { r } = \mathbf { a } + \lambda \mathbf { b }\). [5]
    9 The curve \(C\) has polar equation $$r = 5 \sqrt { } ( \cot \theta ) ,$$ where \(0.01 \leqslant \theta \leqslant \frac { 1 } { 2 } \pi\).
  21. Find the area of the finite region bounded by \(C\) and the line \(\theta = 0.01\), showing full working. Give your answer correct to 1 decimal place.
    Let \(P\) be the point on \(C\) where \(\theta = 0.01\).
  22. Find the distance of \(P\) from the initial line, giving your answer correct to 1 decimal place.
  23. Find the maximum distance of \(C\) from the initial line.
  24. Sketch \(C\).