A-Level Maths
Courses
Papers
Questions
Search
Courses
UFM Pure
Complex numbers 2
Q10
CAIE FP1 2017 November — Question 10
Exam Board
CAIE
Module
FP1 (Further Pure Mathematics 1)
Year
2017
Session
November
Topic
Complex numbers 2
10
Use de Moivre's theorem to show that $$\sin 5 \theta = 5 \sin \theta - 20 \sin ^ { 3 } \theta + 16 \sin ^ { 5 } \theta$$
Hence explain why the roots of the equation \(16 x ^ { 4 } - 20 x ^ { 2 } + 5 = 0\) are \(x = \pm \sin \frac { 1 } { 5 } \pi\) and \(x = \pm \sin \frac { 2 } { 5 } \pi\).
Without using a calculator, find the exact values of $$\sin \frac { 1 } { 5 } \pi \sin \frac { 2 } { 5 } \pi \sin \frac { 3 } { 5 } \pi \sin \frac { 4 } { 5 } \pi \quad \text { and } \quad \sin ^ { 2 } \left( \frac { 1 } { 5 } \pi \right) + \sin ^ { 2 } \left( \frac { 2 } { 5 } \pi \right) .$$
This paper
(12 questions)
View full paper
Q1
Q2
Q3
Q4
Q5
Q6
Q7
Q8
Q9
Q10
Q11 EITHER
Q11 OR