CAIE FP1 2018 November — Question 5

Exam BoardCAIE
ModuleFP1 (Further Pure Mathematics 1)
Year2018
SessionNovember
TopicInvariant lines and eigenvalues and vectors

5 It is given that \(\lambda\) is an eigenvalue of the matrix \(\mathbf { A }\) with \(\mathbf { e }\) as a corresponding eigenvector, and \(\mu\) is an eigenvalue of the matrix \(\mathbf { B }\) for which \(\mathbf { e }\) is also a corresponding eigenvector.
  1. Show that \(\lambda + \mu\) is an eigenvalue of the matrix \(\mathbf { A } + \mathbf { B }\) with \(\mathbf { e }\) as a corresponding eigenvector.
    The matrix \(\mathbf { A }\), given by $$\mathbf { A } = \left( \begin{array} { r r r } 2 & 0 & 1
    - 1 & 2 & 3
    1 & 0 & 2 \end{array} \right)$$ has \(\left( \begin{array} { l } 1
    2
    1 \end{array} \right) , \left( \begin{array} { r } 1
    4
    - 1 \end{array} \right)\) and \(\left( \begin{array} { l } 0
    1
    0 \end{array} \right)\) as eigenvectors.
  2. Find the corresponding eigenvalues.
    The matrix \(\mathbf { B }\) has eigenvalues 4, 5 and 1 with corresponding eigenvectors \(\left( \begin{array} { l } 1
    2
    1 \end{array} \right) , \left( \begin{array} { r } 1
    4
    - 1 \end{array} \right)\) and \(\left( \begin{array} { l } 0
    1
    0 \end{array} \right)\) respectively.
  3. Find a matrix \(\mathbf { P }\) and a diagonal matrix \(\mathbf { D }\) such that \(( \mathbf { A } + \mathbf { B } ) ^ { 3 } = \mathbf { P D P } ^ { - 1 }\).