CAIE FP1 2017 November — Question 11 EITHER

Exam BoardCAIE
ModuleFP1 (Further Pure Mathematics 1)
Year2017
SessionNovember
TopicInvariant lines and eigenvalues and vectors

  1. The vector \(\mathbf { e }\) is an eigenvector of the matrix \(\mathbf { A }\), with corresponding eigenvalue \(\lambda\), and is also an eigenvector of the matrix \(\mathbf { B }\), with corresponding eigenvalue \(\mu\). Show that \(\mathbf { e }\) is an eigenvector of the matrix \(\mathbf { A B }\) with corresponding eigenvalue \(\lambda \mu\).
  2. Find the eigenvalues and corresponding eigenvectors of the matrix \(\mathbf { A }\), where $$\mathbf { A } = \left( \begin{array} { r r r } 0 & 1 & 3
    3 & 2 & - 3
    1 & 1 & 2 \end{array} \right) .$$
  3. The matrix \(\mathbf { B }\), where $$\mathbf { B } = \left( \begin{array} { r r r } 3 & 6 & 1
    1 & - 2 & - 1
    6 & 6 & - 2 \end{array} \right) ,$$ has eigenvectors \(\left( \begin{array} { r } 1
    - 1
    0 \end{array} \right) , \left( \begin{array} { r } 1
    - 1
    1 \end{array} \right)\) and \(\left( \begin{array} { l } 1
    0
    1 \end{array} \right)\). Find the eigenvalues of the matrix \(\mathbf { A B }\), and state corresponding eigenvectors.