CAIE FP1 2016 November — Question 10

Exam BoardCAIE
ModuleFP1 (Further Pure Mathematics 1)
Year2016
SessionNovember
TopicComplex numbers 2

10 Let \(z = \cos \theta + \mathrm { i } \sin \theta\). Show that $$z ^ { n } + \frac { 1 } { z ^ { n } } = 2 \cos n \theta \quad \text { and } \quad z ^ { n } - \frac { 1 } { z ^ { n } } = 2 \mathrm { i } \sin n \theta$$ By considering \(\left( z - \frac { 1 } { z } \right) ^ { 4 } \left( z + \frac { 1 } { z } \right) ^ { 2 }\), show that $$\sin ^ { 4 } \theta \cos ^ { 2 } \theta = \frac { 1 } { 32 } ( \cos 6 \theta - 2 \cos 4 \theta - \cos 2 \theta + 2 ) .$$ Hence find the exact value of \(\int _ { 0 } ^ { \frac { 1 } { 4 } \pi } \sin ^ { 4 } \theta \cos ^ { 2 } \theta d \theta\).
[0pt] [Question 11 is printed on the next page.]