Questions FP1 (1385 questions)

Browse by board
AQA AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further AS Paper 1 Further AS Paper 2 Discrete Further AS Paper 2 Mechanics Further AS Paper 2 Statistics Further Paper 1 Further Paper 2 Further Paper 3 Discrete Further Paper 3 Mechanics Further Paper 3 Statistics M1 M2 M3 Paper 1 Paper 2 Paper 3 S1 S2 S3 CAIE FP1 FP2 Further Paper 1 Further Paper 2 Further Paper 3 Further Paper 4 M1 M2 P1 P2 P3 S1 S2 Edexcel AEA AS Paper 1 AS Paper 2 C1 C12 C2 C3 C34 C4 CP AS CP1 CP2 D1 D2 F1 F2 F3 FD1 FD1 AS FD2 FD2 AS FM1 FM1 AS FM2 FM2 AS FP1 FP1 AS FP2 FP2 AS FP3 FS1 FS1 AS FS2 FS2 AS M1 M2 M3 M4 M5 P1 P2 P3 P4 PMT Mocks Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 OCR AS Pure C1 C2 C3 C4 D1 D2 FD1 AS FM1 AS FP1 FP1 AS FP2 FP3 FS1 AS Further Additional Pure Further Additional Pure AS Further Discrete Further Discrete AS Further Mechanics Further Mechanics AS Further Pure Core 1 Further Pure Core 2 Further Pure Core AS Further Statistics Further Statistics AS H240/01 H240/02 H240/03 M1 M2 M3 M4 Mechanics 1 PURE Pure 1 S1 S2 S3 S4 Stats 1 OCR MEI AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further Extra Pure Further Mechanics A AS Further Mechanics B AS Further Mechanics Major Further Mechanics Minor Further Numerical Methods Further Pure Core Further Pure Core AS Further Pure with Technology Further Statistics A AS Further Statistics B AS Further Statistics Major Further Statistics Minor M1 M2 M3 M4 Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 SPS SPS ASFM SPS ASFM Mechanics SPS ASFM Pure SPS ASFM Statistics SPS FM SPS FM Mechanics SPS FM Pure SPS FM Statistics SPS SM SPS SM Mechanics SPS SM Pure SPS SM Statistics WJEC Further Unit 1 Further Unit 2 Further Unit 3 Further Unit 4 Further Unit 5 Further Unit 6 Unit 1 Unit 2 Unit 3 Unit 4
CAIE FP1 2014 June Q11
11 marks Challenging +1.2
11 The line \(l _ { 1 }\) passes through the points \(A ( 2,3 , - 5 )\) and \(B ( 8,7 , - 13 )\). The line \(l _ { 2 }\) passes through the points \(C ( - 2,1,8 )\) and \(D ( 3 , - 1,4 )\). Find the shortest distance between the lines \(l _ { 1 }\) and \(l _ { 2 }\). The plane \(\Pi _ { 1 }\) passes through the points \(A , B\) and \(D\). The plane \(\Pi _ { 2 }\) passes though the points \(A , C\) and \(D\). Find the acute angle between \(\Pi _ { 1 }\) and \(\Pi _ { 2 }\), giving your answer in degrees.
CAIE FP1 2014 June Q12 EITHER
Challenging +1.2
The curve \(C\) has parametric equations $$x = t ^ { 2 } , \quad y = ( 2 - t ) ^ { \frac { 1 } { 2 } } , \quad \text { for } 0 \leqslant t \leqslant 2 .$$ Find
  1. \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\) in terms of \(t\),
  2. the mean value of \(y\) with respect to \(x\) over the interval \(0 \leqslant x \leqslant 4\),
  3. the \(y\)-coordinate of the centroid of the region enclosed by \(C\), the \(x\)-axis and the \(y\)-axis.
CAIE FP1 2014 June Q12 OR
Challenging +1.2
The curve \(C\) has equation $$y = \frac { a x ^ { 2 } + b x + c } { x + d }$$ where \(a , b , c\) and \(d\) are constants. The curve cuts the \(y\)-axis at \(( 0 , - 2 )\) and has asymptotes \(x = 2\) and \(y = x + 1\).
  1. Write down the value of \(d\).
  2. Determine the values of \(a , b\) and \(c\).
  3. Show that, at all points on \(C\), either \(y \leqslant 3 - 2 \sqrt { 6 }\) or \(y \geqslant 3 + 2 \sqrt { 6 }\).
CAIE FP1 2014 June Q1
5 marks Moderate -0.5
1 The vectors \(\mathbf { a } , \mathbf { b } , \mathbf { c }\) and \(\mathbf { d }\) in \(\mathbb { R } ^ { 3 }\) are given by $$\mathbf { a } = \left( \begin{array} { r }
CAIE FP1 2014 June Q2
6 marks Standard +0.8
2
- 1
1 \end{array} \right) , \quad \mathbf { b } = \left( \begin{array} { l } 1
1
1 \end{array} \right) , \quad \mathbf { c } = \left( \begin{array} { r } 0
1
- 1 \end{array} \right) \quad \text { and } \quad \mathbf { d } = \left( \begin{array} { r }
CAIE FP1 2014 June Q3
7 marks Standard +0.3
3
- 2
0 \end{array} \right) .$$ Show that \(\{ \mathbf { a } , \mathbf { b } , \mathbf { c } \}\) is a basis for \(\mathbb { R } ^ { 3 }\). Express \(\mathbf { d }\) in terms of \(\mathbf { a } , \mathbf { b }\) and \(\mathbf { c }\). 2 Show that the difference between the squares of consecutive integers is an odd integer. Find the sum to \(n\) terms of the series $$\frac { 3 } { 1 ^ { 2 } \times 2 ^ { 2 } } + \frac { 5 } { 2 ^ { 2 } \times 3 ^ { 2 } } + \frac { 7 } { 3 ^ { 2 } \times 4 ^ { 2 } } + \ldots + \frac { 2 r + 1 } { r ^ { 2 } ( r + 1 ) ^ { 2 } } + \ldots$$ and deduce the sum to infinity of the series. 3 It is given that \(\phi ( n ) = 5 ^ { n } ( 4 n + 1 ) - 1\), for \(n = 1,2,3 , \ldots\). Prove, by mathematical induction, that \(\phi ( n )\) is divisible by 8 , for every positive integer \(n\).
CAIE FP1 2014 June Q4
7 marks Standard +0.8
4 The curve \(C\) has cartesian equation \(\left( x ^ { 2 } + y ^ { 2 } \right) ^ { 2 } = 2 a ^ { 2 } x y\), where \(a\) is a positive constant. Show that the polar equation of \(C\) is \(r ^ { 2 } = a ^ { 2 } \sin 2 \theta\). Sketch \(C\) for \(- \pi < \theta \leqslant \pi\). Find the area enclosed by one loop of \(C\).
CAIE FP1 2014 June Q5
8 marks Challenging +1.2
5 State the sum of the series \(z + z ^ { 2 } + z ^ { 3 } + \ldots + z ^ { n }\), for \(z \neq 1\). By letting \(z = \cos \theta + \mathrm { i } \sin \theta\), show that $$\cos \theta + \cos 2 \theta + \cos 3 \theta + \ldots + \cos n \theta = \frac { \sin \frac { 1 } { 2 } n \theta } { \sin \frac { 1 } { 2 } \theta } \cos \frac { 1 } { 2 } ( n + 1 ) \theta$$ where \(\sin \frac { 1 } { 2 } \theta \neq 0\).
CAIE FP1 2014 June Q6
10 marks Challenging +1.2
6 The curve \(C\) has parametric equations $$x = \mathrm { e } ^ { t } - 4 t + 3 , \quad y = 8 \mathrm { e } ^ { \frac { 1 } { 2 } t } , \quad \text { for } 0 \leqslant t \leqslant 2$$
  1. Find, in terms of e , the length of \(C\).
  2. Find, in terms of \(\pi\) and e , the area of the surface generated when \(C\) is rotated through \(2 \pi\) radians about the \(x\)-axis.
CAIE FP1 2014 June Q7
10 marks Standard +0.3
7 The curve \(C\) has parametric equations $$x = \sin t , \quad y = \sin 2 t , \quad \text { for } 0 \leqslant t \leqslant \pi .$$ Find \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\) in terms of \(t\). Hence, or otherwise, find the coordinates of the stationary points on \(C\) and determine their nature.
CAIE FP1 2014 June Q8
11 marks
8 It is given that \(\lambda\) is an eigenvalue of the non-singular square matrix \(\mathbf { A }\), with corresponding eigenvector
e. Show that \(\lambda ^ { - 1 }\) is an eigenvalue of \(\mathbf { A } ^ { - 1 }\) for which \(\mathbf { e }\) is a corresponding eigenvector. Deduce that \(\lambda + \lambda ^ { - 1 }\) is an eigenvalue of \(\mathbf { A } + \mathbf { A } ^ { - 1 }\). It is given that 1 is an eigenvalue of the matrix \(\mathbf { A }\), where $$\mathbf { A } = \left( \begin{array} { r r r } 2 & 0 & 1 \\ - 1 & 2 & 3 \\ 1 & 0 & 2 \end{array} \right)$$ Find a corresponding eigenvector. It is also given that \(\left( \begin{array} { l } 0 \\ 1 \\ 0 \end{array} \right)\) and \(\left( \begin{array} { l } 1 \\ 2 \\ 1 \end{array} \right)\) are eigenvectors of the matrix \(\mathbf { A }\). Find the corresponding eigenvalues.
Hence find a matrix \(\mathbf { P }\) and a diagonal matrix \(\mathbf { D }\) such that $$\left( \mathbf { A } + \mathbf { A } ^ { - 1 } \right) ^ { 3 } = \mathbf { P D P } \mathbf { P } ^ { - 1 }$$
CAIE FP1 2014 June Q9
10 marks Challenging +1.2
9 Using the substitution \(u = \cos \theta\), or any other method, find \(\int \sin \theta \cos ^ { 2 } \theta d \theta\). It is given that \(I _ { n } = \int _ { 0 } ^ { \frac { 1 } { 2 } \pi } \sin ^ { n } \theta \cos ^ { 2 } \theta \mathrm {~d} \theta\), for \(n \geqslant 0\). Show that, for \(n \geqslant 2\), $$I _ { n } = \frac { n - 1 } { n + 2 } I _ { n - 2 }$$ Hence find the exact value of \(\int _ { 0 } ^ { \frac { 1 } { 2 } \pi } \sin ^ { 4 } \theta \cos ^ { 2 } \theta d \theta\).
CAIE FP1 2014 June Q10
12 marks Challenging +1.2
10 Find the particular solution of the differential equation $$\frac { \mathrm { d } ^ { 2 } x } { \mathrm {~d} t ^ { 2 } } + 0.16 \frac { \mathrm {~d} x } { \mathrm {~d} t } + 0.0064 x = 8.64 + 0.32 t$$ given that when \(t = 0 , x = 0\) and \(\frac { \mathrm { d } x } { \mathrm {~d} t } = 0\). Show that, for large positive \(t , \frac { \mathrm {~d} x } { \mathrm {~d} t } \approx 50\).
CAIE FP1 2014 June Q11 EITHER
Standard +0.8
Express \(\frac { 2 x ^ { 2 } - x + 5 } { x ^ { 2 } - 1 }\) in the form \(2 + \frac { A } { x - 1 } + \frac { B } { x + 1 }\), where \(A\) and \(B\) are integers to be found. The curve \(C\) has equation \(y = \frac { 2 x ^ { 2 } - x + 5 } { x ^ { 2 } - 1 }\). Show that there are two distinct values of \(x\) for which \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 0\). Sketch \(C\), stating the equations of the asymptotes and giving the coordinates of any points of intersection with the coordinate axes and with the asymptotes. You do not need to find the coordinates of the turning points.
CAIE FP1 2014 June Q11 OR
Standard +0.8
With respect to an origin \(O\), the point \(A\) has position vector \(4 \mathbf { i } - 2 \mathbf { j } + 2 \mathbf { k }\) and the plane \(\Pi _ { 1 }\) has equation $$\mathbf { r } = ( 4 + \lambda + 3 \mu ) \mathbf { i } + ( - 2 + 7 \lambda + \mu ) \mathbf { j } + ( 2 + \lambda - \mu ) \mathbf { k } ,$$ where \(\lambda\) and \(\mu\) are real. The point \(L\) is such that \(\overrightarrow { O L } = 3 \overrightarrow { O A }\) and \(\Pi _ { 2 }\) is the plane through \(L\) which is parallel to \(\Pi _ { 1 }\). The point \(M\) is such that \(\overrightarrow { A M } = 3 \overrightarrow { M L }\).
  1. Show that \(A\) is in \(\Pi _ { 1 }\).
  2. Find a vector perpendicular to \(\Pi _ { 2 }\).
  3. Find the position vector of the point \(N\) in \(\Pi _ { 2 }\) such that \(O N\) is perpendicular to \(\Pi _ { 2 }\).
  4. Show that the position vector of \(M\) is \(10 \mathbf { i } - 5 \mathbf { j } + 5 \mathbf { k }\) and find the perpendicular distance of \(M\) from the line through \(O\) and \(N\), giving your answer correct to 3 significant figures.
CAIE FP1 2015 June Q1
4 marks Moderate -0.8
1 Use the List of Formulae (MF10) to show that \(\sum _ { r = 1 } ^ { 13 } \left( 3 r ^ { 2 } - 5 r + 1 \right)\) and \(\sum _ { r = 0 } ^ { 9 } \left( r ^ { 3 } - 1 \right)\) have the same numerical value.
CAIE FP1 2015 June Q2
6 marks Standard +0.8
2 Find the value of the constant \(k\) for which the system of equations $$\begin{aligned} 2 x - 3 y + 4 z & = 1 \\ 3 x - y & = 2 \\ x + 2 y + k z & = 1 \end{aligned}$$ does not have a unique solution. For this value of \(k\), solve the system of equations.
CAIE FP1 2015 June Q3
7 marks
3 The sequence \(a _ { 1 } , a _ { 2 } , a _ { 3 } , \ldots\) is such that \(a _ { 1 } > 5\) and \(a _ { n + 1 } = \frac { 4 a _ { n } } { 5 } + \frac { 5 } { a _ { n } }\) for every positive integer \(n\).
Prove by mathematical induction that \(a _ { n } > 5\) for every positive integer \(n\). Prove also that \(a _ { n } > a _ { n + 1 }\) for every positive integer \(n\).
CAIE FP1 2015 June Q4
8 marks Challenging +1.2
4 The roots of the cubic equation \(x ^ { 3 } - 7 x ^ { 2 } + 2 x - 3 = 0\) are \(\alpha , \beta\) and \(\gamma\). Find the values of
  1. \(\frac { 1 } { ( \alpha \beta ) ( \beta \gamma ) ( \gamma \alpha ) }\),
  2. \(\frac { 1 } { \alpha \beta } + \frac { 1 } { \beta \gamma } + \frac { 1 } { \gamma \alpha }\),
  3. \(\frac { 1 } { \alpha ^ { 2 } \beta \gamma } + \frac { 1 } { \alpha \beta ^ { 2 } \gamma } + \frac { 1 } { \alpha \beta \gamma ^ { 2 } }\). Deduce a cubic equation, with integer coefficients, having roots \(\frac { 1 } { \alpha \beta } , \frac { 1 } { \beta \gamma }\) and \(\frac { 1 } { \gamma \alpha }\).
CAIE FP1 2015 June Q5
9 marks Standard +0.8
5 The curves \(C _ { 1 }\) and \(C _ { 2 }\) have polar equations $$\begin{array} { l l } C _ { 1 } : & r = \frac { 1 } { \sqrt { 2 } } , \quad \text { for } 0 \leqslant \theta < 2 \pi \\ C _ { 2 } : & r = \sqrt { } \left( \sin \frac { 1 } { 2 } \theta \right) , \quad \text { for } 0 \leqslant \theta \leqslant \pi \end{array}$$ Find the polar coordinates of the point of intersection of \(C _ { 1 }\) and \(C _ { 2 }\). Sketch \(C _ { 1 }\) and \(C _ { 2 }\) on the same diagram. Find the exact value of the area of the region enclosed by \(C _ { 1 } , C _ { 2 }\) and the half-line \(\theta = 0\).
CAIE FP1 2015 June Q6
9 marks Standard +0.3
6 A curve has equation \(x ^ { 2 } - 6 x y + 25 y ^ { 2 } = 16\). Show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 0\) at the point \(( 3,1 )\). By finding the value of \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\) at the point \(( 3,1 )\), determine the nature of this turning point.
CAIE FP1 2015 June Q7
9 marks Challenging +1.2
7 Let \(I _ { n } = \int _ { 0 } ^ { \frac { 1 } { 2 } \pi } x ^ { n } \sin x \mathrm {~d} x\), where \(n\) is a non-negative integer. Show that $$I _ { n } = n \left( \frac { 1 } { 2 } \pi \right) ^ { n - 1 } - n ( n - 1 ) I _ { n - 2 } , \quad \text { for } n \geqslant 2$$ Find the exact value of \(I _ { 4 }\).
CAIE FP1 2015 June Q8
11 marks Challenging +1.8
8 By considering \(\sum _ { r = 1 } ^ { n } z ^ { 2 r - 1 }\), where \(z = \cos \theta + \mathrm { i } \sin \theta\), show that, if \(\sin \theta \neq 0\), $$\sum _ { r = 1 } ^ { n } \sin ( 2 r - 1 ) \theta = \frac { \sin ^ { 2 } n \theta } { \sin \theta }$$ Deduce that $$\sum _ { r = 1 } ^ { n } ( 2 r - 1 ) \cos \left[ \frac { ( 2 r - 1 ) \pi } { 2 n } \right] = - \operatorname { cosec } \left( \frac { \pi } { 2 n } \right) \cot \left( \frac { \pi } { 2 n } \right)$$
CAIE FP1 2015 June Q9
11 marks Challenging +1.2
9 The curve \(C\) has parametric equations $$x = 4 t + 2 t ^ { \frac { 3 } { 2 } } , \quad y = 4 t - 2 t ^ { \frac { 3 } { 2 } } , \quad \text { for } 0 \leqslant t \leqslant 4$$ Find the arc length of \(C\), giving your answer correct to 3 significant figures. Find the mean value of \(y\) with respect to \(x\) over the interval \(0 \leqslant x \leqslant 32\).
CAIE FP1 2015 June Q10
12 marks Challenging +1.2
10 The matrix \(\mathbf { A }\) is given by $$\mathbf { A } = \left( \begin{array} { r r r } 2 & 2 & - 3 \\ 2 & 2 & 3 \\ - 3 & 3 & 3 \end{array} \right)$$ The matrix \(\mathbf { A }\) has an eigenvector \(\left( \begin{array} { r } 1 \\ - 1 \\ 1 \end{array} \right)\). Find the corresponding eigenvalue. The matrix \(\mathbf { A }\) also has eigenvalues 4 and 6. Find corresponding eigenvectors. Hence find a matrix \(\mathbf { P }\) such that \(\mathbf { A } = \mathbf { P D P } \mathbf { P } ^ { - 1 }\), where \(\mathbf { D }\) is a diagonal matrix which is to be determined. The matrix \(\mathbf { B }\) is such that \(\mathbf { B } = \mathbf { Q A Q } ^ { - 1 }\), where $$\mathbf { Q } = \left( \begin{array} { r r r } 4 & 11 & 5 \\ 1 & 4 & 2 \\ 1 & 2 & 1 \end{array} \right)$$ By using the expression \(\mathbf { P D P } ^ { - 1 }\) for \(\mathbf { A }\), find the set of eigenvalues and a corresponding set of eigenvectors for \(\mathbf { B }\).
[0pt] [Question 11 is printed on the next page.]