CAIE
FP1
2014
June
Q11
11 marks
Challenging +1.2
11 The line \(l _ { 1 }\) passes through the points \(A ( 2,3 , - 5 )\) and \(B ( 8,7 , - 13 )\). The line \(l _ { 2 }\) passes through the points \(C ( - 2,1,8 )\) and \(D ( 3 , - 1,4 )\). Find the shortest distance between the lines \(l _ { 1 }\) and \(l _ { 2 }\).
The plane \(\Pi _ { 1 }\) passes through the points \(A , B\) and \(D\). The plane \(\Pi _ { 2 }\) passes though the points \(A , C\) and \(D\). Find the acute angle between \(\Pi _ { 1 }\) and \(\Pi _ { 2 }\), giving your answer in degrees.
CAIE
FP1
2014
June
Q3
7 marks
Standard +0.3
3
- 2
0
\end{array} \right) .$$
Show that \(\{ \mathbf { a } , \mathbf { b } , \mathbf { c } \}\) is a basis for \(\mathbb { R } ^ { 3 }\).
Express \(\mathbf { d }\) in terms of \(\mathbf { a } , \mathbf { b }\) and \(\mathbf { c }\).
2 Show that the difference between the squares of consecutive integers is an odd integer.
Find the sum to \(n\) terms of the series
$$\frac { 3 } { 1 ^ { 2 } \times 2 ^ { 2 } } + \frac { 5 } { 2 ^ { 2 } \times 3 ^ { 2 } } + \frac { 7 } { 3 ^ { 2 } \times 4 ^ { 2 } } + \ldots + \frac { 2 r + 1 } { r ^ { 2 } ( r + 1 ) ^ { 2 } } + \ldots$$
and deduce the sum to infinity of the series.
3 It is given that \(\phi ( n ) = 5 ^ { n } ( 4 n + 1 ) - 1\), for \(n = 1,2,3 , \ldots\). Prove, by mathematical induction, that \(\phi ( n )\) is divisible by 8 , for every positive integer \(n\).
CAIE
FP1
2014
June
Q7
10 marks
Standard +0.3
7 The curve \(C\) has parametric equations
$$x = \sin t , \quad y = \sin 2 t , \quad \text { for } 0 \leqslant t \leqslant \pi .$$
Find \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\) in terms of \(t\).
Hence, or otherwise, find the coordinates of the stationary points on \(C\) and determine their nature.
CAIE
FP1
2014
June
Q9
10 marks
Challenging +1.2
9 Using the substitution \(u = \cos \theta\), or any other method, find \(\int \sin \theta \cos ^ { 2 } \theta d \theta\).
It is given that \(I _ { n } = \int _ { 0 } ^ { \frac { 1 } { 2 } \pi } \sin ^ { n } \theta \cos ^ { 2 } \theta \mathrm {~d} \theta\), for \(n \geqslant 0\). Show that, for \(n \geqslant 2\),
$$I _ { n } = \frac { n - 1 } { n + 2 } I _ { n - 2 }$$
Hence find the exact value of \(\int _ { 0 } ^ { \frac { 1 } { 2 } \pi } \sin ^ { 4 } \theta \cos ^ { 2 } \theta d \theta\).
CAIE
FP1
2014
June
Q10
12 marks
Challenging +1.2
10 Find the particular solution of the differential equation
$$\frac { \mathrm { d } ^ { 2 } x } { \mathrm {~d} t ^ { 2 } } + 0.16 \frac { \mathrm {~d} x } { \mathrm {~d} t } + 0.0064 x = 8.64 + 0.32 t$$
given that when \(t = 0 , x = 0\) and \(\frac { \mathrm { d } x } { \mathrm {~d} t } = 0\).
Show that, for large positive \(t , \frac { \mathrm {~d} x } { \mathrm {~d} t } \approx 50\).
CAIE
FP1
2015
June
Q3
7 marks
3 The sequence \(a _ { 1 } , a _ { 2 } , a _ { 3 } , \ldots\) is such that \(a _ { 1 } > 5\) and \(a _ { n + 1 } = \frac { 4 a _ { n } } { 5 } + \frac { 5 } { a _ { n } }\) for every positive integer \(n\).
Prove by mathematical induction that \(a _ { n } > 5\) for every positive integer \(n\).
Prove also that \(a _ { n } > a _ { n + 1 }\) for every positive integer \(n\).
CAIE
FP1
2015
June
Q5
9 marks
Standard +0.8
5 The curves \(C _ { 1 }\) and \(C _ { 2 }\) have polar equations
$$\begin{array} { l l }
C _ { 1 } : & r = \frac { 1 } { \sqrt { 2 } } , \quad \text { for } 0 \leqslant \theta < 2 \pi \\
C _ { 2 } : & r = \sqrt { } \left( \sin \frac { 1 } { 2 } \theta \right) , \quad \text { for } 0 \leqslant \theta \leqslant \pi
\end{array}$$
Find the polar coordinates of the point of intersection of \(C _ { 1 }\) and \(C _ { 2 }\).
Sketch \(C _ { 1 }\) and \(C _ { 2 }\) on the same diagram.
Find the exact value of the area of the region enclosed by \(C _ { 1 } , C _ { 2 }\) and the half-line \(\theta = 0\).
CAIE
FP1
2015
June
Q6
9 marks
Standard +0.3
6 A curve has equation \(x ^ { 2 } - 6 x y + 25 y ^ { 2 } = 16\). Show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 0\) at the point \(( 3,1 )\).
By finding the value of \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\) at the point \(( 3,1 )\), determine the nature of this turning point.
CAIE
FP1
2015
June
Q8
11 marks
Challenging +1.8
8 By considering \(\sum _ { r = 1 } ^ { n } z ^ { 2 r - 1 }\), where \(z = \cos \theta + \mathrm { i } \sin \theta\), show that, if \(\sin \theta \neq 0\),
$$\sum _ { r = 1 } ^ { n } \sin ( 2 r - 1 ) \theta = \frac { \sin ^ { 2 } n \theta } { \sin \theta }$$
Deduce that
$$\sum _ { r = 1 } ^ { n } ( 2 r - 1 ) \cos \left[ \frac { ( 2 r - 1 ) \pi } { 2 n } \right] = - \operatorname { cosec } \left( \frac { \pi } { 2 n } \right) \cot \left( \frac { \pi } { 2 n } \right)$$
CAIE
FP1
2015
June
Q9
11 marks
Challenging +1.2
9 The curve \(C\) has parametric equations
$$x = 4 t + 2 t ^ { \frac { 3 } { 2 } } , \quad y = 4 t - 2 t ^ { \frac { 3 } { 2 } } , \quad \text { for } 0 \leqslant t \leqslant 4$$
Find the arc length of \(C\), giving your answer correct to 3 significant figures.
Find the mean value of \(y\) with respect to \(x\) over the interval \(0 \leqslant x \leqslant 32\).
CAIE
FP1
2015
June
Q10
12 marks
Challenging +1.2
10 The matrix \(\mathbf { A }\) is given by
$$\mathbf { A } = \left( \begin{array} { r r r }
2 & 2 & - 3 \\
2 & 2 & 3 \\
- 3 & 3 & 3
\end{array} \right)$$
The matrix \(\mathbf { A }\) has an eigenvector \(\left( \begin{array} { r } 1 \\ - 1 \\ 1 \end{array} \right)\). Find the corresponding eigenvalue.
The matrix \(\mathbf { A }\) also has eigenvalues 4 and 6. Find corresponding eigenvectors.
Hence find a matrix \(\mathbf { P }\) such that \(\mathbf { A } = \mathbf { P D P } \mathbf { P } ^ { - 1 }\), where \(\mathbf { D }\) is a diagonal matrix which is to be determined.
The matrix \(\mathbf { B }\) is such that \(\mathbf { B } = \mathbf { Q A Q } ^ { - 1 }\), where
$$\mathbf { Q } = \left( \begin{array} { r r r }
4 & 11 & 5 \\
1 & 4 & 2 \\
1 & 2 & 1
\end{array} \right)$$
By using the expression \(\mathbf { P D P } ^ { - 1 }\) for \(\mathbf { A }\), find the set of eigenvalues and a corresponding set of eigenvectors for \(\mathbf { B }\).
[0pt]
[Question 11 is printed on the next page.]