CAIE FP1 2015 June — Question 7

Exam BoardCAIE
ModuleFP1 (Further Pure Mathematics 1)
Year2015
SessionJune
TopicReduction Formulae

7 Let \(I _ { n } = \int _ { 0 } ^ { \frac { 1 } { 2 } \pi } x ^ { n } \sin x \mathrm {~d} x\), where \(n\) is a non-negative integer. Show that $$I _ { n } = n \left( \frac { 1 } { 2 } \pi \right) ^ { n - 1 } - n ( n - 1 ) I _ { n - 2 } , \quad \text { for } n \geqslant 2$$ Find the exact value of \(I _ { 4 }\).