| Exam Board | CAIE |
| Module | FP1 (Further Pure Mathematics 1) |
| Year | 2015 |
| Session | June |
| Topic | Proof by induction |
3 The sequence \(a _ { 1 } , a _ { 2 } , a _ { 3 } , \ldots\) is such that \(a _ { 1 } > 5\) and \(a _ { n + 1 } = \frac { 4 a _ { n } } { 5 } + \frac { 5 } { a _ { n } }\) for every positive integer \(n\).
Prove by mathematical induction that \(a _ { n } > 5\) for every positive integer \(n\).
Prove also that \(a _ { n } > a _ { n + 1 }\) for every positive integer \(n\).