A-Level Maths
Courses
Papers
Questions
Search
Questions — OCR MEI Paper 3
(118 questions)
Browse by module
All questions
AEA
AS Paper 1
AS Paper 2
AS Pure
C1
C12
C2
C3
C34
C4
CP AS
CP1
CP2
D1
D2
F1
F2
F3
FD1
FD1 AS
FD2
FD2 AS
FM1
FM1 AS
FM2
FM2 AS
FP1
FP1 AS
FP2
FP2 AS
FP3
FS1
FS1 AS
FS2
FS2 AS
Further AS Paper 1
Further AS Paper 2 Discrete
Further AS Paper 2 Mechanics
Further AS Paper 2 Statistics
Further Additional Pure
Further Additional Pure AS
Further Discrete
Further Discrete AS
Further Extra Pure
Further Mechanics
Further Mechanics A AS
Further Mechanics AS
Further Mechanics B AS
Further Mechanics Major
Further Mechanics Minor
Further Numerical Methods
Further Paper 1
Further Paper 2
Further Paper 3
Further Paper 3 Discrete
Further Paper 3 Mechanics
Further Paper 3 Statistics
Further Paper 4
Further Pure Core
Further Pure Core 1
Further Pure Core 2
Further Pure Core AS
Further Pure with Technology
Further Statistics
Further Statistics A AS
Further Statistics AS
Further Statistics B AS
Further Statistics Major
Further Statistics Minor
Further Unit 1
Further Unit 2
Further Unit 3
Further Unit 4
Further Unit 5
Further Unit 6
H240/01
H240/02
H240/03
M1
M2
M3
M4
M5
Mechanics 1
P1
P2
P3
P4
PMT Mocks
PURE
Paper 1
Paper 2
Paper 3
Pure 1
S1
S2
S3
S4
SPS ASFM
SPS ASFM Mechanics
SPS ASFM Pure
SPS ASFM Statistics
SPS FM
SPS FM Mechanics
SPS FM Pure
SPS FM Statistics
SPS SM
SPS SM Mechanics
SPS SM Pure
SPS SM Statistics
Stats 1
Unit 1
Unit 2
Unit 3
Unit 4
Browse by board
AQA
AS Paper 1
AS Paper 2
C1
C2
C3
C4
D1
D2
FP1
FP2
FP3
Further AS Paper 1
Further AS Paper 2 Discrete
Further AS Paper 2 Mechanics
Further AS Paper 2 Statistics
Further Paper 1
Further Paper 2
Further Paper 3 Discrete
Further Paper 3 Mechanics
Further Paper 3 Statistics
M1
M2
M3
Paper 1
Paper 2
Paper 3
S1
S2
S3
CAIE
FP1
FP2
Further Paper 1
Further Paper 2
Further Paper 3
Further Paper 4
M1
M2
P1
P2
P3
S1
S2
Edexcel
AEA
AS Paper 1
AS Paper 2
C1
C12
C2
C3
C34
C4
CP AS
CP1
CP2
D1
D2
F1
F2
F3
FD1
FD1 AS
FD2
FD2 AS
FM1
FM1 AS
FM2
FM2 AS
FP1
FP1 AS
FP2
FP2 AS
FP3
FS1
FS1 AS
FS2
FS2 AS
M1
M2
M3
M4
M5
P1
P2
P3
P4
PMT Mocks
Paper 1
Paper 2
Paper 3
S1
S2
S3
S4
OCR
AS Pure
C1
C2
C3
C4
D1
D2
FD1 AS
FM1 AS
FP1
FP1 AS
FP2
FP3
FS1 AS
Further Additional Pure
Further Additional Pure AS
Further Discrete
Further Discrete AS
Further Mechanics
Further Mechanics AS
Further Pure Core 1
Further Pure Core 2
Further Pure Core AS
Further Statistics
Further Statistics AS
H240/01
H240/02
H240/03
M1
M2
M3
M4
Mechanics 1
PURE
Pure 1
S1
S2
S3
S4
Stats 1
OCR MEI
AS Paper 1
AS Paper 2
C1
C2
C3
C4
D1
D2
FP1
FP2
FP3
Further Extra Pure
Further Mechanics A AS
Further Mechanics B AS
Further Mechanics Major
Further Mechanics Minor
Further Numerical Methods
Further Pure Core
Further Pure Core AS
Further Pure with Technology
Further Statistics A AS
Further Statistics B AS
Further Statistics Major
Further Statistics Minor
M1
M2
M3
M4
Paper 1
Paper 2
Paper 3
S1
S2
S3
S4
SPS
SPS ASFM
SPS ASFM Mechanics
SPS ASFM Pure
SPS ASFM Statistics
SPS FM
SPS FM Mechanics
SPS FM Pure
SPS FM Statistics
SPS SM
SPS SM Mechanics
SPS SM Pure
SPS SM Statistics
WJEC
Further Unit 1
Further Unit 2
Further Unit 3
Further Unit 4
Further Unit 5
Further Unit 6
Unit 1
Unit 2
Unit 3
Unit 4
OCR MEI Paper 3 2022 June Q12
12
Show that \(\cos x = \sin \left( x + \frac { \pi } { 2 } \right)\).
Hence show that \(\sin x \approx \frac { 16 x ( \pi - x ) } { 5 \pi ^ { 2 } - 4 x ( \pi - x ) }\) gives the approximation \(\cos x \approx \frac { \pi ^ { 2 } - 4 x ^ { 2 } } { \pi ^ { 2 } + x ^ { 2 } }\), as stated in line 31. \section*{END OF QUESTION PAPER} OCR is committed to seeking permission to reproduce all third-party content that it uses in its assessment materials. OCR has attempted to identify and contact all copyright holders whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download from our public website (\href{http://www.ocr.org.uk}{www.ocr.org.uk}) after the live examination series. If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible opportunity.
For queries or further information please contact The OCR Copyright Team, The Triangle Building, Shaftesbury Road, Cambridge CB2 8EA.
OCR is part of Cambridge University Press \& Assessment, which is itself a department of the University of Cambridge.
OCR MEI Paper 3 2023 June Q1
1 In this question you must show detailed reasoning.
The obtuse angle \(\theta\) is such that \(\sin \theta = \frac { 2 } { \sqrt { 13 } }\).
Find the exact value of \(\cos \theta\).
OCR MEI Paper 3 2023 June Q2
2 The straight line \(y = 5 - 2 x\) is shown in the diagram.
\includegraphics[max width=\textwidth, alt={}, center]{20639e13-01cc-4d96-b694-fb3cf1828f4d-04_705_773_881_239}
On the copy of the diagram in the Printed Answer Booklet, sketch the graph of \(y = | 5 - 2 x |\).
Solve the inequality \(| 5 - 2 x | < 3\).
OCR MEI Paper 3 2023 June Q3
3 In this question you must show detailed reasoning.
Find the value of \(k\) such that \(\frac { 1 } { \sqrt { 5 } + \sqrt { 6 } } + \frac { 1 } { \sqrt { 6 } + \sqrt { 7 } } = \frac { k } { \sqrt { 5 } + \sqrt { 7 } }\).
OCR MEI Paper 3 2023 June Q4
4 In this question you must show detailed reasoning.
Find the coordinates of the points where the curve \(y = x ^ { 3 } - 2 x ^ { 2 } - 5 x + 6\) crosses the \(x\)-axis.
OCR MEI Paper 3 2023 June Q5
5 In this question you must show detailed reasoning.
This question is about the curve \(y = x ^ { 3 } - 5 x ^ { 2 } + 6 x\).
Find the equation of the tangent, \(T\), to the curve at the point ( 0,0 ).
Find the equation of the normal, \(N\), to the curve at the point ( 1,2 ).
Find the coordinates of the point of intersection of \(T\) and \(N\).
OCR MEI Paper 3 2023 June Q6
6
Quadrilateral KLMN has vertices \(\mathrm { K } ( - 4,1 ) , \mathrm { L } ( 5 , - 1 ) , \mathrm { M } ( 6,2 )\) and \(\mathrm { N } ( 2,5 )\), as shown in Fig. 6.1. \begin{figure}[h]
\captionsetup{labelformat=empty} \caption{Fig. 6.1} \includegraphics[alt={},max width=\textwidth]{20639e13-01cc-4d96-b694-fb3cf1828f4d-06_567_1004_404_319}
\end{figure}
Find the coordinates of the following midpoints.
P , the midpoint of KL
Q, the midpoint of LM
R, the midpoint of MN
S, the midpoint of NK
(ii) Verify that PQRS is a parallelogram.
TVWX is a quadrilateral as shown in Fig. 6.2.
Points A and B divide side TV into 3 equal parts. Points C and D divide side VW into 3 equal parts. Points E and F divide side WX into 3 equal parts. Points G and H divide side TX into 3 equal parts.
\(\overrightarrow { \mathrm { TA } } = \mathbf { a } , \quad \overrightarrow { \mathrm { TH } } = \mathbf { b } , \quad \overrightarrow { \mathrm { VC } } = \mathbf { c }\). \begin{figure}[h]
\captionsetup{labelformat=empty} \caption{Fig. 6.2} \includegraphics[alt={},max width=\textwidth]{20639e13-01cc-4d96-b694-fb3cf1828f4d-06_577_671_1877_319}
\end{figure} (i) Show that \(\overrightarrow { \mathrm { WX } } = k ( - \mathbf { a } + \mathbf { b } - \mathbf { c } )\), where \(k\) is a constant to be determined.
(ii) Verify that AH is parallel to DE .
(iii) Verify that BC is parallel to GF .
OCR MEI Paper 3 2023 June Q7
7 A wire, 10 cm long, is bent to form the perimeter of a sector of a circle, as shown in the diagram. The radius is \(r \mathrm {~cm}\) and the angle at the centre is \(\theta\) radians.
\includegraphics[max width=\textwidth, alt={}, center]{20639e13-01cc-4d96-b694-fb3cf1828f4d-07_323_204_342_242} Determine the maximum possible area of the sector, showing that it is a maximum.
OCR MEI Paper 3 2023 June Q8
8 A circle with centre \(A\) and radius 8 cm and a circle with centre \(C\) and radius 12 cm intersect at points B and D . Quadrilateral \(A B C D\) has area \(60 \mathrm {~cm} ^ { 2 }\).
Determine the two possible values for the length AC.
OCR MEI Paper 3 2023 June Q9
9 A small country started using solar panels to produce electrical energy in the year 2000. Electricity production is measured in megawatt hours (MWh). For the period from 2000 to 2009, the annual electrical energy produced using solar panels can be modelled by the equation \(\mathrm { P } = 0.3 \mathrm { e } ^ { 0.5 \mathrm { t } }\), where \(P\) is the annual amount of electricity produced in MWh and \(t\) is the time in years after the year 2000.
According to this model, find the amount of electricity produced using solar panels in each of the following years.
2000
2009
Give a reason why the model is unlikely to be suitable for predicting the annual amount of electricity produced using solar panels in the year 2025. An alternative model is suggested; the curve representing this model is shown in Fig. 9. \begin{figure}[h]
\captionsetup{labelformat=empty} \caption{Fig. 9} \includegraphics[alt={},max width=\textwidth]{20639e13-01cc-4d96-b694-fb3cf1828f4d-08_702_1587_1265_230}
\end{figure}
Explain how the graph shows that the alternative model gives a value for the amount of electricity produced in 2009 that is consistent with the original model.
On the axes given in the Printed Answer Booklet, sketch the gradient function of the model shown in Fig. 9.
State approximately the value of \(t\) at the point of inflection in Fig. 9.
Interpret the significance of the point of inflection in the context of the model.
State approximately the long term value of the annual amount of electricity produced using solar panels according to the model represented in Fig. 9.
OCR MEI Paper 3 2023 June Q10
10
You are given that \(\left( x ^ { 2 } + y ^ { 2 } \right) ^ { 3 } = x ^ { 6 } + 3 x ^ { 4 } y ^ { 2 } + 3 x ^ { 2 } y ^ { 4 } + y ^ { 6 }\).
Hence, or otherwise, prove that \(\sin ^ { 6 } \theta + \cos ^ { 6 } \theta = 1 - \frac { 3 } { 4 } \sin ^ { 2 } 2 \theta\) for all values of \(\theta\).
Use the result from part (a) to determine the minimum value of \(\sin ^ { 6 } \theta + \cos ^ { 6 } \theta\). The questions in this section refer to the article on the Insert. You should read the article before attempting the questions.
OCR MEI Paper 3 2023 June Q11
11
Evaluate \(\sum _ { r = 1 } ^ { 5 } r ^ { 2 }\).
Show that Euler's approximate formula, as given in line 13, gives the exact value of \(\sum _ { r = 1 } ^ { 5 } r ^ { 2 }\).
OCR MEI Paper 3 2023 June Q12
12 With the aid of a suitable diagram, show that the three triangles referred to in line 26 have the areas given in line 27 .
OCR MEI Paper 3 2023 June Q13
13 Prove that Euler's approximate formula, as given in line 13, when applied to \(\sum _ { \mathrm { r } = 1 } ^ { \mathrm { n } } \mathrm { r } ^ { 2 }\) gives exactly \(\frac { n ( n + 1 ) ( 2 n + 1 ) } { 6 }\).
OCR MEI Paper 3 2023 June Q14
14 Show that the expression given in line 33 simplifies to \(\sum _ { \mathrm { r } = 1 } ^ { \mathrm { n } } \frac { 1 } { \mathrm { r } } \approx \ln \mathrm { n } + \frac { 13 } { 24 } + \frac { 6 \mathrm { n } + 5 } { 12 \mathrm { n } ( \mathrm { n } + 1 ) }\), as given in line 34.
OCR MEI Paper 3 2023 June Q15
15 The expression given in line 34 is used to calculate \(\sum _ { r = 1 } ^ { 6 } \frac { 1 } { r }\).
Show that the error in the result is less than \(1.5 \%\) of the true value.
OCR MEI Paper 3 2024 June Q1
1 Solve the inequality \(\frac { x } { 5 } > 6 - x\).
OCR MEI Paper 3 2024 June Q2
2
The function \(\mathrm { f } ( x )\) is defined by $$f ( x ) = \sqrt { 1 + 2 x } \text { for } x \geqslant - \frac { 1 } { 2 }$$ Find an expression for \(\mathrm { f } ^ { - 1 } ( x )\) and state the domain of this inverse function.
Explain why \(\mathrm { g } ( x ) = 1 + x ^ { 2 }\), with domain all real numbers, has no inverse function.
OCR MEI Paper 3 2024 June Q7
7 Prove that \(\sin 8 \theta \tan 4 \theta + \cos 8 \theta = 1\).
OCR MEI Paper 3 2024 June Q8
8 In this question you must show detailed reasoning.
Express \(\cos x + \sqrt { 3 } \sin x\) in the form \(\mathrm { R } \sin ( \mathrm { x } + \alpha )\), where \(R > 0\) and \(0 < \alpha < \frac { 1 } { 2 } \pi\). Give the values of \(R\) and \(\alpha\) in exact form.
Hence solve the equation \(\cos x = \sqrt { 3 } ( 1 - \sin x )\) for values of \(x\) in the interval \(- \pi \leqslant x \leqslant \pi\). Give the roots of this equation in exact form.
OCR MEI Paper 3 2024 June Q9
9 This question is about the equation \(\mathrm { f } ( x ) = 0\), where \(\mathrm { f } ( x ) = x ^ { 4 } - x - \frac { 1 } { 3 x - 2 }\).
Fig. 9.1 shows the curve \(y = f ( x )\).
Fig. 9.1
\includegraphics[max width=\textwidth, alt={}, center]{60e1e785-c34b-48ef-a63f-13a25fee186e-06_940_929_518_239}
Show, by calculation, that the equation \(\mathrm { f } ( x ) = 0\) has a root between \(x = 1\) and \(x = 2\).
Fig. 9.2 shows part of a spreadsheet being used to find a root of the equation. \begin{table}[h]
\captionsetup{labelformat=empty} \caption{Fig. 9.2}
A
B
1
\(x\)
\(f ( x )\)
2
1.5
3.1625
3
1.25
0.619977679
4
1.125
- 0.250466087
5
\end{table} Write down a suitable number to use as the next value of \(x\) in the spreadsheet.
Determine a root of the equation \(\mathrm { f } ( x ) = 0\). Give your answer correct to \(\mathbf { 1 }\) decimal place.
Fig. 9.3 shows a similar spreadsheet being used to search for another root of \(\mathrm { f } ( x ) = 0\). \begin{table}[h]
\captionsetup{labelformat=empty} \caption{Fig. 9.3}
A
B
1
x
f(x)
2
0
0.5
3
1
-1
4
0.5
1.5625
5
0.75
-4.4336
6
0.6
4.5296
7
0.7
-10.4599
8
0.65
19.5285
9
0.675
-40.4674
10
0.6625
79.5301
11
0.66875
-160.4687
10
\end{table}
Explain why it looks from rows 2 and 3 of the spreadsheet as if there is a root between 0 and 1.
Explain why this process will not find a root between 0 and 1 .
OCR MEI Paper 3 2024 June Q10
10 The diagram below shows the curve \(y = f ( x )\).
\includegraphics[max width=\textwidth, alt={}, center]{60e1e785-c34b-48ef-a63f-13a25fee186e-07_942_679_1500_242} Sketch the graph of the gradient function, \(y = f ^ { \prime } ( x )\), on the copy of the diagram in the Printed Answer Booklet.
OCR MEI Paper 3 2024 June Q11
11 Fig. 11.1 shows the curve with equation \(\mathrm { y } = \mathrm { g } ( \mathrm { x } )\) where \(\mathrm { g } ( x ) = x \sin x + \cos x\) and the curve of the gradient function \(\mathrm { y } = \mathrm { g } ^ { \prime } ( \mathrm { x } )\) for \(- 2 \pi \leqslant x \leqslant 2 \pi\). \begin{figure}[h]
\captionsetup{labelformat=empty} \caption{Fig. 11.1} \includegraphics[alt={},max width=\textwidth]{60e1e785-c34b-48ef-a63f-13a25fee186e-08_1136_1196_459_246}
\end{figure}
Show that the \(x\)-coordinates of the points on the curve \(y = g ( x )\) where the gradient is 1 satisfy the equation \(\frac { 1 } { x } - \cos x = 0\). Fig. 11.2 shows part of the curve with equation \(y = \frac { 1 } { x } - \cos x\). \begin{figure}[h]
\captionsetup{labelformat=empty} \caption{Fig. 11.2} \includegraphics[alt={},max width=\textwidth]{60e1e785-c34b-48ef-a63f-13a25fee186e-09_678_1363_424_239}
\end{figure}
Use the Newton-Raphson method with a suitable starting value to find the smallest positive \(x\)-coordinate of a point on the curve \(y = x \sin x + \cos x\) where the gradient is 1 . You should write down at least the following.
The iteration you use
The starting value
The solution correct to \(\mathbf { 4 }\) decimal places
Explain why \(x _ { 1 } = 3\) is not a suitable starting value for the Newton-Raphson method in part (b).
OCR MEI Paper 3 2024 June Q12
12 The diagram shows the curve with parametric equations
\(x = \sin 2 \theta + 2 , y = 2 \cos \theta + \cos 2 \theta\), for \(0 \leqslant \theta < 2 \pi\).
\includegraphics[max width=\textwidth, alt={}, center]{60e1e785-c34b-48ef-a63f-13a25fee186e-10_771_673_397_239}
In this question you must show detailed reasoning. Determine the exact coordinates of all the stationary points on the curve.
Write down the equation of the line of symmetry of the curve.
OCR MEI Paper 3 2024 June Q13
13 Substitute appropriate values of \(t _ { 1 }\) and \(t _ { 2 }\) to verify that \(t _ { 1 } t _ { 2 }\) gives the correct value for the \(y\)-coordinate of the point of intersection of the tangents at the points A and B in Fig. \(\mathbf { C 1 . }\)
Previous
1
2
3
4
5
Next