OCR MEI Paper 3 2024 June — Question 9

Exam BoardOCR MEI
ModulePaper 3 (Paper 3)
Year2024
SessionJune
TopicSign Change & Interval Methods
TypeSign Change with Function Evaluation

9 This question is about the equation \(\mathrm { f } ( x ) = 0\), where \(\mathrm { f } ( x ) = x ^ { 4 } - x - \frac { 1 } { 3 x - 2 }\).
Fig. 9.1 shows the curve \(y = f ( x )\).
Fig. 9.1
\includegraphics[max width=\textwidth, alt={}, center]{60e1e785-c34b-48ef-a63f-13a25fee186e-06_940_929_518_239}
  1. Show, by calculation, that the equation \(\mathrm { f } ( x ) = 0\) has a root between \(x = 1\) and \(x = 2\).
  2. Fig. 9.2 shows part of a spreadsheet being used to find a root of the equation. \begin{table}[h]
    \captionsetup{labelformat=empty} \caption{Fig. 9.2}
    AB
    1\(x\)\(f ( x )\)
    21.53.1625
    31.250.619977679
    41.125- 0.250466087
    5
    \end{table} Write down a suitable number to use as the next value of \(x\) in the spreadsheet.
  3. Determine a root of the equation \(\mathrm { f } ( x ) = 0\). Give your answer correct to \(\mathbf { 1 }\) decimal place.
  4. Fig. 9.3 shows a similar spreadsheet being used to search for another root of \(\mathrm { f } ( x ) = 0\). \begin{table}[h]
    \captionsetup{labelformat=empty} \caption{Fig. 9.3}
    AB
    1xf(x)
    200.5
    31-1
    40.51.5625
    50.75-4.4336
    60.64.5296
    70.7-10.4599
    80.6519.5285
    90.675-40.4674
    100.662579.5301
    110.66875-160.4687
    10
    \end{table}
    1. Explain why it looks from rows 2 and 3 of the spreadsheet as if there is a root between 0 and 1.
    2. Explain why this process will not find a root between 0 and 1 .