OCR MEI Paper 3 2024 June — Question 11

Exam BoardOCR MEI
ModulePaper 3 (Paper 3)
Year2024
SessionJune
TopicNewton-Raphson method
TypeMultiple roots and starting value selection

11 Fig. 11.1 shows the curve with equation \(\mathrm { y } = \mathrm { g } ( \mathrm { x } )\) where \(\mathrm { g } ( x ) = x \sin x + \cos x\) and the curve of the gradient function \(\mathrm { y } = \mathrm { g } ^ { \prime } ( \mathrm { x } )\) for \(- 2 \pi \leqslant x \leqslant 2 \pi\). \begin{figure}[h]
\captionsetup{labelformat=empty} \caption{Fig. 11.1} \includegraphics[alt={},max width=\textwidth]{60e1e785-c34b-48ef-a63f-13a25fee186e-08_1136_1196_459_246}
\end{figure}
  1. Show that the \(x\)-coordinates of the points on the curve \(y = g ( x )\) where the gradient is 1 satisfy the equation \(\frac { 1 } { x } - \cos x = 0\). Fig. 11.2 shows part of the curve with equation \(y = \frac { 1 } { x } - \cos x\). \begin{figure}[h]
    \captionsetup{labelformat=empty} \caption{Fig. 11.2} \includegraphics[alt={},max width=\textwidth]{60e1e785-c34b-48ef-a63f-13a25fee186e-09_678_1363_424_239}
    \end{figure}
  2. Use the Newton-Raphson method with a suitable starting value to find the smallest positive \(x\)-coordinate of a point on the curve \(y = x \sin x + \cos x\) where the gradient is 1 . You should write down at least the following.
    • The iteration you use
    • The starting value
    • The solution correct to \(\mathbf { 4 }\) decimal places
    • Explain why \(x _ { 1 } = 3\) is not a suitable starting value for the Newton-Raphson method in part (b).