OCR MEI Paper 3 2023 June — Question 6

Exam BoardOCR MEI
ModulePaper 3 (Paper 3)
Year2023
SessionJune
TopicVectors Introduction & 2D

6
  1. Quadrilateral KLMN has vertices \(\mathrm { K } ( - 4,1 ) , \mathrm { L } ( 5 , - 1 ) , \mathrm { M } ( 6,2 )\) and \(\mathrm { N } ( 2,5 )\), as shown in Fig. 6.1. \begin{figure}[h]
    \captionsetup{labelformat=empty} \caption{Fig. 6.1} \includegraphics[alt={},max width=\textwidth]{20639e13-01cc-4d96-b694-fb3cf1828f4d-06_567_1004_404_319}
    \end{figure}
    1. Find the coordinates of the following midpoints.
      • P , the midpoint of KL
  2. Q, the midpoint of LM
  3. R, the midpoint of MN
  4. S, the midpoint of NK
    (ii) Verify that PQRS is a parallelogram.
  5. TVWX is a quadrilateral as shown in Fig. 6.2.
  6. Points A and B divide side TV into 3 equal parts. Points C and D divide side VW into 3 equal parts. Points E and F divide side WX into 3 equal parts. Points G and H divide side TX into 3 equal parts.
    \(\overrightarrow { \mathrm { TA } } = \mathbf { a } , \quad \overrightarrow { \mathrm { TH } } = \mathbf { b } , \quad \overrightarrow { \mathrm { VC } } = \mathbf { c }\). \begin{figure}[h]
    \captionsetup{labelformat=empty} \caption{Fig. 6.2} \includegraphics[alt={},max width=\textwidth]{20639e13-01cc-4d96-b694-fb3cf1828f4d-06_577_671_1877_319}
    \end{figure} (i) Show that \(\overrightarrow { \mathrm { WX } } = k ( - \mathbf { a } + \mathbf { b } - \mathbf { c } )\), where \(k\) is a constant to be determined.
    (ii) Verify that AH is parallel to DE .
    (iii) Verify that BC is parallel to GF .