Questions — OCR MEI C3 (366 questions)

Browse by board
AQA AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further AS Paper 1 Further AS Paper 2 Discrete Further AS Paper 2 Mechanics Further AS Paper 2 Statistics Further Paper 1 Further Paper 2 Further Paper 3 Discrete Further Paper 3 Mechanics Further Paper 3 Statistics M1 M2 M3 Paper 1 Paper 2 Paper 3 S1 S2 S3 CAIE FP1 FP2 Further Paper 1 Further Paper 2 Further Paper 3 Further Paper 4 M1 M2 P1 P2 P3 S1 S2 Edexcel AEA AS Paper 1 AS Paper 2 C1 C12 C2 C3 C34 C4 CP AS CP1 CP2 D1 D2 F1 F2 F3 FD1 FD1 AS FD2 FD2 AS FM1 FM1 AS FM2 FM2 AS FP1 FP1 AS FP2 FP2 AS FP3 FS1 FS1 AS FS2 FS2 AS M1 M2 M3 M4 M5 P1 P2 P3 P4 PMT Mocks Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 OCR AS Pure C1 C2 C3 C4 D1 D2 FD1 AS FM1 AS FP1 FP1 AS FP2 FP3 FS1 AS Further Additional Pure Further Additional Pure AS Further Discrete Further Discrete AS Further Mechanics Further Mechanics AS Further Pure Core 1 Further Pure Core 2 Further Pure Core AS Further Statistics Further Statistics AS H240/01 H240/02 H240/03 M1 M2 M3 M4 Mechanics 1 PURE Pure 1 S1 S2 S3 S4 Stats 1 OCR MEI AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further Extra Pure Further Mechanics A AS Further Mechanics B AS Further Mechanics Major Further Mechanics Minor Further Numerical Methods Further Pure Core Further Pure Core AS Further Pure with Technology Further Statistics A AS Further Statistics B AS Further Statistics Major Further Statistics Minor M1 M2 M3 M4 Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 SPS SPS ASFM SPS ASFM Mechanics SPS ASFM Pure SPS ASFM Statistics SPS FM SPS FM Mechanics SPS FM Pure SPS FM Statistics SPS SM SPS SM Mechanics SPS SM Pure SPS SM Statistics WJEC Further Unit 1 Further Unit 2 Further Unit 3 Further Unit 4 Further Unit 5 Further Unit 6 Unit 1 Unit 2 Unit 3 Unit 4
OCR MEI C3 Q1
1 \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{2437cecc-f084-4e49-ab36-1c132ba13267-1_480_1058_364_578} \captionsetup{labelformat=empty} \caption{Fig. 8}
\end{figure} Fig. 8 shows the curve \(y = \mathrm { f } ( x )\), where \(\mathrm { f } ( x ) = \frac { 1 } { \mathrm { e } ^ { x } + \mathrm { e } ^ { - x } + 2 }\).
  1. Show algebraically that \(\mathrm { f } ( x )\) is an even function, and state how this property relates to the curve \(y = \mathrm { f } ( x )\).
  2. Find \(\mathrm { f } ^ { \prime } ( x )\).
  3. Show that \(\mathrm { f } ( x ) = \frac { \mathrm { e } ^ { x } } { \left( \mathrm { e } ^ { x } + 1 \right) ^ { 2 } }\).
  4. Hence, using the substitution \(u = \mathrm { e } ^ { x } + 1\), or otherwise, find the exact area enclosed by the curve \(y = \mathrm { f } ( x )\), the \(x\)-axis, and the lines \(x = 0\) and \(x = 1\).
  5. Show that there is only one point of intersection of the curves \(y = \mathrm { f } ( x )\) and \(y = \frac { 1 } { 4 } \mathrm { e } ^ { x }\), and find its coordinates.
OCR MEI C3 Q2
2 Evaluate \(\int _ { 0 } ^ { \frac { 1 } { 6 } \pi } \cos 3 x \mathrm {~d} x\).
OCR MEI C3 Q3
3
  1. Differentiate \(x \cos 2 x\) with respect to \(x\).
  2. Integrate \(x \cos 2 x\) with respect to \(x\).
OCR MEI C3 Q4
4 Fig. 9 shows the curve \(y = \mathrm { f } ( x )\), where \(\mathrm { f } ( x ) = \frac { 1 } { \sqrt { 2 x - x ^ { 2 } } }\).
The curve has asymptotes \(x = 0\) and \(x = a\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{2437cecc-f084-4e49-ab36-1c132ba13267-2_652_795_876_717} \captionsetup{labelformat=empty} \caption{Fig. 9}
\end{figure}
  1. Find \(a\). Hence write down the domain of the function.
  2. Show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { x - 1 } { \left( 2 x - x ^ { 2 } \right) ^ { \frac { 3 } { 2 } } }\). Hence find the coordinates of the turning point of the curve, and write down the range of the function. The function \(\mathrm { g } ( x )\) is defined by \(\mathrm { g } ( x ) = \frac { 1 } { \sqrt { 1 - x ^ { 2 } } }\).
  3. (A) Show algebraically that \(\mathrm { g } ( x )\) is an even function.
    (B) Show that \(\mathrm { g } ( x - 1 ) = \mathrm { f } ( x )\).
    (C) Hence prove that the curve \(y = \mathrm { f } ( x )\) is symmetrical, and state its line of symmetry.
OCR MEI C3 Q1
1 Fig. 9 shows the curve \(y = \frac { x ^ { 2 } } { 3 x - 1 }\).
P is a turning point, and the curve has a vertical asymptote \(x = a\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{bce065bf-a56c-4686-8fa7-cb18cb95012e-1_835_1474_591_372} \captionsetup{labelformat=empty} \caption{Fig. 9}
\end{figure}
  1. Write down the value of \(a\).
  2. Show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { x ( 3 x - 2 ) } { ( 3 x - 1 ) ^ { 2 } }\).
  3. Find the exact coordinates of the turning point P . Calculate the gradient of the curve when \(x = 0.6\) and \(x = 0.8\), and hence verify that P is a minimum point.
  4. Using the substitution \(u = 3 x - 1\), show that \(\int \frac { x ^ { 2 } } { 3 x - 1 } \mathrm {~d} x = \frac { 1 } { 27 } \int \left( u + 2 + \frac { 1 } { u } \right) \mathrm { d } u\). Hence find the exact area of the region enclosed by the curve, the \(x\)-axis and the lines \(x = \frac { 2 } { 3 }\) and \(x = 1\).
OCR MEI C3 Q2
2 Differentiate \(\sqrt [ 3 ] { 1 + 6 x ^ { 2 } }\).
OCR MEI C3 Q3
3 Show that the curve \(y = x ^ { 2 } \ln x\) has a stationary point when \(x = \frac { 1 } { \sqrt { \mathrm { e } } }\).
OCR MEI C3 Q4
4 The equation of a curve is \(y = \frac { x ^ { 2 } } { 2 x + 1 }\).
  1. Show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { 2 x ( x + 1 ) } { ( 2 x + 1 ) ^ { 2 } }\).
  2. Find the coordinates of the stationary points of the curve. You need not determine their nature.
  3. Differentiate \(\sqrt { 1 + 2 x }\).
  4. Show that the derivative of \(\ln \left( 1 - \mathrm { e } ^ { - x } \right)\) is \(\frac { 1 } { \mathrm { e } ^ { x } - 1 }\).
OCR MEI C3 Q6
6 The function \(\mathrm { f } ( x ) = \frac { \sin x } { 2 - \cos x }\) has domain \(- \pi \leqslant x \leqslant \pi\).
Fig. 8 shows the graph of \(y = \mathrm { f } ( x )\) for \(0 \leqslant x \leqslant \pi\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{bce065bf-a56c-4686-8fa7-cb18cb95012e-3_557_844_602_646} \captionsetup{labelformat=empty} \caption{Fig. 8}
\end{figure}
  1. Find \(\mathrm { f } ( - x )\) in terms of \(\mathrm { f } ( x )\). Hence sketch the graph of \(y = \mathrm { f } ( x )\) for the complete domain \(- \pi \leqslant x \leqslant \pi\).
  2. Show that \(\mathrm { f } ^ { \prime } ( x ) = \frac { 2 \cos x - 1 } { ( 2 - \cos x ) ^ { 2 } }\). Hence find the exact coordinates of the turning point P . State the range of the function \(\mathrm { f } ( x )\), giving your answer exactly.
  3. Using the substitution \(u = 2 - \cos x\) or otherwise, find the exact value of \(\int _ { 0 } ^ { \pi } \frac { \sin x } { 2 \cos x } \mathrm {~d} x\).
  4. Sketch the graph of \(y = \mathrm { f } ( 2 x )\).
  5. Using your answers to parts (iii) and (iv), write down the exact value of \(\int _ { 0 } ^ { \frac { 1 } { 2 } \pi } \frac { \sin 2 x } { 2 \cos 2 x } \mathrm {~d} x\).
OCR MEI C3 Q7
7 Fig. 3 shows the curve defined by the equation \(y = \arcsin ( x - 1 )\), for \(0 \leqslant x \leqslant 2\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{bce065bf-a56c-4686-8fa7-cb18cb95012e-4_681_542_498_794} \captionsetup{labelformat=empty} \caption{Fig. 3}
\end{figure}
  1. Find \(x\) in terms of \(y\), and show that \(\frac { \mathrm { d } x } { \mathrm {~d} y } = \cos y\).
  2. Hence find the exact gradient of the curve at the point where \(x = 1.5\).
OCR MEI C3 Q8
8 A curve has equation \(y = \frac { x } { 2 + 3 \ln x }\). Find \(\frac { d y } { d x }\). Hence find the exact coordinates of the stationary point of the curve.
OCR MEI C3 Q1
1 Fig. 8 shows the line \(y = 1\) and the curve \(y = \mathrm { f } ( x )\), where \(\mathrm { f } ( x ) = \frac { ( x - 2 ) ^ { 2 } } { x }\). The curve touches the \(x\)-axis at \(\mathrm { P } ( 2,0 )\) and has another turning point at the point Q . \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{d1206ce8-7716-4205-b98e-664e7ead8a25-1_961_1473_445_320} \captionsetup{labelformat=empty} \caption{Fig. 8}
\end{figure}
  1. Show that \(\mathrm { f } ^ { \prime } ( x ) = 1 - \frac { 4 } { x ^ { 2 } }\), and find \(\mathrm { f } ^ { \prime \prime } ( x )\). Hence find the coordinates of Q and, using \(\mathrm { f } ^ { \prime \prime } ( x )\), verify that it is a maximum point.
  2. Verify that the line \(y = 1\) meets the curve \(y = \mathrm { f } ( x )\) at the points with \(x\)-coordinates 1 and 4 . Hence find the exact area of the shaded region enclosed by the line and the curve. The curve \(y = \mathrm { f } ( x )\) is now transformed by a translation with vector \(\binom { - 1 } { - 1 }\). The resulting curve has equation \(y = \mathrm { g } ( x )\).
  3. Show that \(\mathrm { g } ( x ) = \frac { x ^ { 2 } - 3 x } { x + 1 }\).
  4. Without further calculation, write down the value of \(\int _ { 0 } ^ { 3 } \mathrm {~g} ( x ) \mathrm { d } x\), justifying your answer.
OCR MEI C3 Q2
2 Fig. 9 shows the curve \(y = x \mathrm { e } ^ { - 2 x }\) together with the straight line \(y = m x\), where \(m\) is a constant, with \(0 < m < 1\). The curve and the line meet at O and P . The dashed line is the tangent at P . \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{d1206ce8-7716-4205-b98e-664e7ead8a25-2_433_979_472_591} \captionsetup{labelformat=empty} \caption{Fig. 9}
\end{figure}
  1. Show that the \(x\)-coordinate of P is \(- \frac { 1 } { 2 } \ln m\).
  2. Find, in terms of \(m\), the gradient of the tangent to the curve at P . You are given that OP and this tangent are equally inclined to the \(x\)-axis.
  3. Show that \(m = \mathrm { e } ^ { - 2 }\), and find the exact coordinates of P .
  4. Find the exact area of the shaded region between the line OP and the curve. END OF QUESTION PAPER
OCR MEI C3 Q3
3
  1. Use the substitution \(u = 1 + x\) to show that $$\int _ { 0 } ^ { 1 } \frac { x ^ { 3 } } { 1 + x } \mathrm {~d} x = \int _ { a } ^ { b } \left( u ^ { 2 } - 3 u + 3 - \frac { 1 } { u } \right) \mathrm { d } u$$ where \(a\) and \(b\) are to be found.
    Hence evaluate \(\int _ { 0 } ^ { 1 } \frac { x ^ { 3 } } { 1 + x } \mathrm {~d} x\), giving your answer in exact form. Fig. 8 shows the curve \(y = x ^ { 2 } \ln ( 1 + x )\). \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{d1206ce8-7716-4205-b98e-664e7ead8a25-3_830_806_907_706} \captionsetup{labelformat=empty} \caption{Fig. 8}
    \end{figure}
  2. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\). Verify that the origin is a stationary point of the curve.
  3. Using integration by parts, and the result of part (i), find the exact area enclosed by the curve \(y = x ^ { 2 } \ln ( 1 + x )\), the \(x\)-axis and the line \(x = 1\).
OCR MEI C3 Q1
1 Fig. 8 shows the curve \(y = 3 \ln x + x - x ^ { 2 }\).
The curve crosses the \(x\)-axis at P and Q , and has a turning point at R . The \(x\)-coordinate of Q is approximately 2.05 . \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{65ac8807-cd93-450f-adb5-dc6864f8470c-1_720_834_578_681} \captionsetup{labelformat=empty} \caption{Fig. 8}
\end{figure}
  1. Verify that the coordinates of P are \(( 1,0 )\).
  2. Find the coordinates of R , giving the \(y\)-coordinate correct to 3 significant figures. Find \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\), and use this to verify that R is a maximum point.
  3. Find \(\int \ln x \mathrm {~d} x\). Hence calculate the area of the region enclosed by the curve and the \(x\)-axis between P and Q , giving your answer to 2 significant figures.
OCR MEI C3 Q2
2 Fig. 9 shows the curve \(y = \mathrm { f } ( x )\), where \(\mathrm { f } ( x ) = \frac { \mathrm { e } ^ { 2 x } } { 1 + \mathrm { e } ^ { 2 x } }\). The curve crosses the \(y\)-axis at P . \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{65ac8807-cd93-450f-adb5-dc6864f8470c-2_595_1230_445_496} \captionsetup{labelformat=empty} \caption{Fig. 9}
\end{figure}
  1. Find the coordinates of P .
  2. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\), simplifying your answer. Hence calculate the gradient of the curve at P .
  3. Show that the area of the region enclosed by \(y = \mathrm { f } ( x )\), the \(x\)-axis, the \(y\)-axis and the line \(x = 1\) is \(\frac { 1 } { 2 } \ln \left( \frac { 1 + \mathrm { e } ^ { 2 } } { 2 } \right)\). The function \(\mathrm { g } ( x )\) is defined by \(\mathrm { g } ( x ) = \frac { 1 } { 2 } \left( \frac { \mathrm { e } ^ { x } - \mathrm { e } ^ { - x } } { \mathrm { e } ^ { x } + \mathrm { e } ^ { - x } } \right)\).
  4. Prove algebraically that \(\mathrm { g } ( x )\) is an odd function. Interpret this result graphically.
  5. (A) Show that \(\mathrm { g } ( x ) + \frac { 1 } { 2 } = \mathrm { f } ( x )\).
    (B) Describe the transformation which maps the curve \(y = \mathrm { g } ( x )\) onto the curve \(y = \mathrm { f } ( x )\).
    (C) What can you conclude about the symmetry of the curve \(y = \mathrm { f } ( x )\) ?
OCR MEI C3 Q3
3 A curve is defined by the equation \(y = 2 x \ln ( 1 + x )\).
  1. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) and hence verify that the origin is a stationary point of the curve.
  2. Find \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\), and use this to verify that the origin is a minimum point.
  3. Using the substitution \(u = 1 + x\), show that \(\int \frac { x ^ { 2 } } { 1 + x } \mathrm {~d} x = \int \left( u - 2 + \frac { 1 } { u } \right) \mathrm { d } u\). Hence evaluate \(\int _ { 0 } ^ { 1 } \frac { x ^ { 2 } } { 1 + x } \mathrm {~d} x\), giving your answer in an exact form.
  4. Using integration by parts and your answer to part (iii), evaluate \(\int _ { 0 } ^ { 1 } 2 x \ln ( 1 + x ) \mathrm { d } x\).
OCR MEI C3 Q1
1 The function \(\mathrm { f } ( x )\) is defined by \(\mathrm { f } ( x ) = \sqrt { 4 - x ^ { 2 } }\) for \(- 2 \leqslant x \leqslant 2\).
  1. Show that the curve \(y = \sqrt { 4 - x ^ { 2 } }\) is a semicircle of radius 2 , and explain why it is not the whole of this circle. Fig. 9 shows a point \(\mathrm { P } ( a , b )\) on the semicircle. The tangent at P is shown. \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{9e68f5e0-3394-4962-acd9-25bb31f09f2b-1_628_935_728_657} \captionsetup{labelformat=empty} \caption{Fig. 9}
    \end{figure}
  2. (A) Use the gradient of OP to find the gradient of the tangent at P in terms of \(a\) and \(b\).
    (B) Differentiate \(\sqrt { 4 - x ^ { 2 } }\) and deduce the value of \(\mathrm { f } ^ { \prime } ( a )\).
    (C) Show that your answers to parts (A) and (B) are equivalent. The function \(\mathrm { g } ( x )\) is defined by \(\mathrm { g } ( x ) = 3 \mathrm { f } ( x - 2 )\), for \(0 \leqslant x \leqslant 4\).
  3. Describe a sequence of two transformations that would map the curve \(y = \mathrm { f } ( x )\) onto the curve \(y = \mathrm { g } ( x )\). Hence sketch the curve \(y = \mathrm { g } ( x )\).
  4. Show that if \(y = \mathrm { g } ( x )\) then \(9 x ^ { 2 } + y ^ { 2 } = 36 x\).
OCR MEI C3 Q2
2 Fig. 7 shows part of the curve \(y = \mathrm { f } ( x )\), where \(\mathrm { f } ( x ) = x \sqrt { 1 + x }\). The curve meets the \(x\)-axis at the origin and at the point P . \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{9e68f5e0-3394-4962-acd9-25bb31f09f2b-2_487_875_487_624} \captionsetup{labelformat=empty} \caption{Fig. 7}
\end{figure}
  1. Verify that the point P has coordinates \(( - 1,0 )\). Hence state the domain of the function \(\mathrm { f } ( x )\).
  2. Show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { 2 + 3 x } { 2 \sqrt { 1 + x } }\).
  3. Find the exact coordinates of the turning point of the curve. Hence write down the range of the function.
  4. Use the substitution \(u = 1 + x\) to show that $$\int _ { - 1 } ^ { 0 } x \sqrt { 1 + x } \mathrm {~d} x = \int _ { 0 } ^ { 1 } \left( \begin{array} { l l } u ^ { \frac { 3 } { 2 } } & u ^ { \frac { 1 } { 2 } } \end{array} \right) \mathrm { d } u .$$ Hence find the area of the region enclosed by the curve and the \(x\)-axis.
OCR MEI C3 Q3
3 Fig. 7 shows the curve \(y = \frac { x ^ { 2 } } { 1 + 2 x ^ { 3 } }\). It is undefined at \(x = a\); the line \(x = a\) is a vertical asymptote. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{9e68f5e0-3394-4962-acd9-25bb31f09f2b-3_654_1034_463_531} \captionsetup{labelformat=empty} \caption{Fig. 7}
\end{figure}
  1. Calculate the value of \(a\), giving your answer correct to 3 significant figures.
  2. Show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { 2 x - 2 x ^ { 4 } } { \left( 1 + 2 x ^ { 3 } \right) ^ { 2 } }\). Hence determine the coordinates of the turning points of the curve.
  3. Show that the area of the region between the curve and the \(x\)-axis from \(x = 0\) to \(x = 1\) is \(\frac { 1 } { 6 } \ln 3\).
OCR MEI C3 Q1
1 Fig. 8 shows part of the curve \(y = x \cos 2 x\), together with a point P at which the curve crosses the \(x\)-axis. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{aee8da6a-7d5c-442f-9729-55d81d9a606f-1_427_968_432_584} \captionsetup{labelformat=empty} \caption{Fig. 8}
\end{figure}
  1. Find the exact coordinates of P .
  2. Show algebraically that \(x \cos 2 x\) is an odd function, and interpret this result graphically.
  3. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\).
  4. Show that turning points occur on the curve for values of \(x\) which satisfy the equation \(x \tan 2 x = \frac { 1 } { 2 }\).
  5. Find the gradient of the curve at the origin. Show that the second derivative of \(x \cos 2 x\) is zero when \(x = 0\).
  6. Evaluate \(\int _ { 0 } ^ { \frac { 1 } { 4 } \pi } x \cos 2 x \mathrm {~d} x\), giving your answer in terms of \(\pi\). Interpret this result graphically.
OCR MEI C3 Q2
2 Fig. 8 shows part of the curve \(y = x \sin 3 x\). It crosses the \(x\)-axis at P . The point on the curve with \(x\)-coordinate \(\frac { 1 } { 6 } \pi\) is Q . \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{aee8da6a-7d5c-442f-9729-55d81d9a606f-2_418_769_516_673} \captionsetup{labelformat=empty} \caption{Fig. 8}
\end{figure}
  1. Find the \(x\)-coordinate of P .
  2. Show that Q lies on the line \(y = x\).
  3. Differentiate \(x \sin 3 x\). Hence prove that the line \(y = x\) touches the curve at Q .
  4. Show that the area of the region bounded by the curve and the line \(y = x\) is \(\frac { 1 } { 72 } \left( \pi ^ { 2 } - 8 \right)\).
OCR MEI C3 Q3
3 The function \(f ( x ) = \ln \left( t + x ^ { 2 } \right)\) has domain \(- 3 \leqslant x \leqslant 3\).
Fig. 9 shows the graph of \(y = f ( x )\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{aee8da6a-7d5c-442f-9729-55d81d9a606f-3_510_895_523_604} \captionsetup{labelformat=empty} \caption{Fig. 9}
\end{figure}
  1. Show algebraically that the function is even. State how this property relates to the shape of the curve.
  2. Find the gradient of the curve at the point \(\mathrm { P } ( 2 , \ln 5 )\).
  3. Explain why the function does not have an inverse for the domain \(- 3 \leqslant x \leqslant 3\). The domain of \(f ( x )\) is now restricted to \(0 \leqslant x \leqslant 3\). The inverse of \(f ( x )\) is the function \(g ( x )\).
  4. Sketch the curves \(y = f ( x )\) and \(y = g ( x )\) on the same axes. State the domain of the function \(g ( x )\),
    Show that \(\mathrm { g } ( x ) = \sqrt { \mathrm { e } ^ { x } - 1 }\).
  5. Differentiate \(\mathrm { g } ( \mathrm { x } )\). Hence verify that \(\mathrm { g } ^ { \prime } ( \ln 5 ) = 1 \frac { 1 } { 4 }\). Explain the connection between this result and your answer to part (ii).
OCR MEI C3 Q1
1 Fig. 4 shows a cone with its axis vertical. The angle between the axis and the slant edge is \(45 ^ { \circ }\). Water is poured into the cone at a constant rate of \(5 \mathrm {~cm} ^ { 3 }\) per second. At time \(t\) seconds, the height of the water surface above the vertex O of the cone is \(h \mathrm {~cm}\), and the volume of water in the cone is \(V \mathrm {~cm} ^ { 3 }\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{431d496a-a606-4b92-9f5c-e12b074a7ba9-1_295_403_542_871} \captionsetup{labelformat=empty} \caption{Fig. 4}
\end{figure} Find \(V\) in terms of \(h\). Hence find the rate at which the height of water is increasing when the height is 10 cm .
[0pt] [You are given that the volume \(V\) of a cone of height \(h\) and radius \(r\) is \(V = \frac { 1 } { 3 } \pi r ^ { 2 } h\) ].
OCR MEI C3 Q2
2 A spherical balloon of radius \(r \mathrm {~cm}\) has volume \(V \mathrm {~cm} ^ { 3 }\), where \(V = \frac { 4 } { 3 } \pi r ^ { 3 }\). The balloon is inflated at a constant rate of \(10 \mathrm {~cm} ^ { 3 } \mathrm {~s} ^ { - 1 }\). Find the rate of increase of \(r\) when \(r = 8\).