OCR MEI C3 — Question 1

Exam BoardOCR MEI
ModuleC3 (Core Mathematics 3)
TopicAreas Between Curves

1 Fig. 8 shows the line \(y = 1\) and the curve \(y = \mathrm { f } ( x )\), where \(\mathrm { f } ( x ) = \frac { ( x - 2 ) ^ { 2 } } { x }\). The curve touches the \(x\)-axis at \(\mathrm { P } ( 2,0 )\) and has another turning point at the point Q . \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{d1206ce8-7716-4205-b98e-664e7ead8a25-1_961_1473_445_320} \captionsetup{labelformat=empty} \caption{Fig. 8}
\end{figure}
  1. Show that \(\mathrm { f } ^ { \prime } ( x ) = 1 - \frac { 4 } { x ^ { 2 } }\), and find \(\mathrm { f } ^ { \prime \prime } ( x )\). Hence find the coordinates of Q and, using \(\mathrm { f } ^ { \prime \prime } ( x )\), verify that it is a maximum point.
  2. Verify that the line \(y = 1\) meets the curve \(y = \mathrm { f } ( x )\) at the points with \(x\)-coordinates 1 and 4 . Hence find the exact area of the shaded region enclosed by the line and the curve. The curve \(y = \mathrm { f } ( x )\) is now transformed by a translation with vector \(\binom { - 1 } { - 1 }\). The resulting curve has equation \(y = \mathrm { g } ( x )\).
  3. Show that \(\mathrm { g } ( x ) = \frac { x ^ { 2 } - 3 x } { x + 1 }\).
  4. Without further calculation, write down the value of \(\int _ { 0 } ^ { 3 } \mathrm {~g} ( x ) \mathrm { d } x\), justifying your answer.
This paper (3 questions)
View full paper