OCR MEI C3 — Question 6

Exam BoardOCR MEI
ModuleC3 (Core Mathematics 3)
TopicDifferentiating Transcendental Functions

6 The function \(\mathrm { f } ( x ) = \frac { \sin x } { 2 - \cos x }\) has domain \(- \pi \leqslant x \leqslant \pi\).
Fig. 8 shows the graph of \(y = \mathrm { f } ( x )\) for \(0 \leqslant x \leqslant \pi\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{bce065bf-a56c-4686-8fa7-cb18cb95012e-3_557_844_602_646} \captionsetup{labelformat=empty} \caption{Fig. 8}
\end{figure}
  1. Find \(\mathrm { f } ( - x )\) in terms of \(\mathrm { f } ( x )\). Hence sketch the graph of \(y = \mathrm { f } ( x )\) for the complete domain \(- \pi \leqslant x \leqslant \pi\).
  2. Show that \(\mathrm { f } ^ { \prime } ( x ) = \frac { 2 \cos x - 1 } { ( 2 - \cos x ) ^ { 2 } }\). Hence find the exact coordinates of the turning point P . State the range of the function \(\mathrm { f } ( x )\), giving your answer exactly.
  3. Using the substitution \(u = 2 - \cos x\) or otherwise, find the exact value of \(\int _ { 0 } ^ { \pi } \frac { \sin x } { 2 \cos x } \mathrm {~d} x\).
  4. Sketch the graph of \(y = \mathrm { f } ( 2 x )\).
  5. Using your answers to parts (iii) and (iv), write down the exact value of \(\int _ { 0 } ^ { \frac { 1 } { 2 } \pi } \frac { \sin 2 x } { 2 \cos 2 x } \mathrm {~d} x\).