Questions — OCR MEI AS Paper 1 (93 questions)

Browse by board
AQA AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further AS Paper 1 Further AS Paper 2 Discrete Further AS Paper 2 Mechanics Further AS Paper 2 Statistics Further Paper 1 Further Paper 2 Further Paper 3 Discrete Further Paper 3 Mechanics Further Paper 3 Statistics M1 M2 M3 Paper 1 Paper 2 Paper 3 S1 S2 S3 CAIE FP1 FP2 Further Paper 1 Further Paper 2 Further Paper 3 Further Paper 4 M1 M2 P1 P2 P3 S1 S2 Edexcel AEA AS Paper 1 AS Paper 2 C1 C12 C2 C3 C34 C4 CP AS CP1 CP2 D1 D2 F1 F2 F3 FD1 FD1 AS FD2 FD2 AS FM1 FM1 AS FM2 FM2 AS FP1 FP1 AS FP2 FP2 AS FP3 FS1 FS1 AS FS2 FS2 AS M1 M2 M3 M4 M5 P1 P2 P3 P4 PMT Mocks Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 OCR AS Pure C1 C2 C3 C4 D1 D2 FD1 AS FM1 AS FP1 FP1 AS FP2 FP3 FS1 AS Further Additional Pure Further Additional Pure AS Further Discrete Further Discrete AS Further Mechanics Further Mechanics AS Further Pure Core 1 Further Pure Core 2 Further Pure Core AS Further Statistics Further Statistics AS H240/01 H240/02 H240/03 M1 M2 M3 M4 Mechanics 1 PURE Pure 1 S1 S2 S3 S4 Stats 1 OCR MEI AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further Extra Pure Further Mechanics A AS Further Mechanics B AS Further Mechanics Major Further Mechanics Minor Further Numerical Methods Further Pure Core Further Pure Core AS Further Pure with Technology Further Statistics A AS Further Statistics B AS Further Statistics Major Further Statistics Minor M1 M2 M3 M4 Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 SPS SPS ASFM SPS ASFM Mechanics SPS ASFM Pure SPS ASFM Statistics SPS FM SPS FM Mechanics SPS FM Pure SPS FM Statistics SPS SM SPS SM Mechanics SPS SM Pure SPS SM Statistics WJEC Further Unit 1 Further Unit 2 Further Unit 3 Further Unit 4 Further Unit 5 Further Unit 6 Unit 1 Unit 2 Unit 3 Unit 4
OCR MEI AS Paper 1 2024 June Q10
10 A boat pulls a water skier of mass 65 kg with a light inextensible horizontal towrope. The mass of the boat is 985 kg . There is a driving force of 2400 N acting on the boat. There are horizontal resistances to motion of 400 N and 1200 N acting on the skier and the boat respectively.
  1. Draw a diagram showing all the horizontal forces acting on the skier and the boat.
    1. Write down the equation of motion of the skier.
    2. Find the equation of motion of the boat.
  2. Find the acceleration of the skier and the boat. The driving force of the boat is increased. The skier can only hold on to the towrope when the tension is no greater than her weight.
  3. Determine her greatest acceleration, assuming that the resistances to motion stay the same.
OCR MEI AS Paper 1 2024 June Q11
11 A student records the time a pendulum takes to swing for different lengths of pendulum. The student decides to plot a graph of \(\log _ { 10 } T\) against \(\log _ { 10 } l\) where \(T\) is the time in seconds that the pendulum takes to return to its start position and \(l\) is the length in metres of the pendulum. They use a model for \(\log _ { 10 } T\) in terms of \(\log _ { 10 } l\) of the form \(\log _ { 10 } T = \log _ { 10 } \mathrm { k } + \mathrm { n } \log _ { 10 } \mathrm { l }\). The student records the following data points.
\(\log _ { 10 } l\)- 0.0970.146
\(\log _ { 10 } T\)0.2540.376
  1. Determine the values of \(k\) and \(n\) that best model the data. Give your values correct to 2 significant figures.
  2. Using these values of \(k\) and \(n\), write the student's model as an equation expressing \(T\) in terms of \(l\).
OCR MEI AS Paper 1 2024 June Q12
12 The diagram shows the graph of \(\mathrm { f } ( \mathrm { x } ) = \mathrm { k } ( \mathrm { x } - \mathrm { p } ) ( \mathrm { x } - \mathrm { q } )\) where \(k , p\) and \(q\) are constants. The graph passes through the points \(( - 1,0 ) , ( 0 , - 4 )\) and \(( 2,0 )\).
\includegraphics[max width=\textwidth, alt={}, center]{b5c47a93-ce43-4aa1-ba7f-fbb650523373-7_775_638_347_242}
  1. Find \(\mathrm { f } ( \mathrm { x } )\) in the form \(\mathrm { ax } ^ { 2 } + \mathrm { bx } + \mathrm { c }\). A cubic curve has gradient function \(f ( x )\). This cubic curve passes through the point \(( 0,8 )\).
  2. Find the equation of the cubic curve.
  3. Determine the coordinates of the stationary points of the cubic curve.
OCR MEI AS Paper 1 2020 November Q1
1 Celia states that \(n ^ { 2 } + 2 n + 10\) is always odd when \(n\) is a prime number. Prove that Celia’s statement is false.
OCR MEI AS Paper 1 2020 November Q2
2 Fig. 2 shows a quadrilateral ABCD . The lengths AB and BC are 5 cm and 6 cm respectively. The angles \(\mathrm { ABC } , \mathrm { ACD }\) and DAC are \(60 ^ { \circ } , 60 ^ { \circ }\) and \(75 ^ { \circ }\) respectively. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{a1b6c827-7d74-4527-9b60-58872e3d5ef7-3_547_643_740_242} \captionsetup{labelformat=empty} \caption{Fig. 2}
\end{figure} Calculate the exact value of the length AD.
OCR MEI AS Paper 1 2020 November Q3
3 Fig. 3 shows a triangle PQR . The vector \(\overrightarrow { \mathrm { PQ } }\) is \(\mathbf { i } + 7 \mathbf { j }\) and the vector \(\overrightarrow { \mathrm { QR } }\) is \(4 \mathbf { i } - 12 \mathbf { j }\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{a1b6c827-7d74-4527-9b60-58872e3d5ef7-3_412_234_1736_244} \captionsetup{labelformat=empty} \caption{Fig. 3}
\end{figure}
  1. Show that the triangle PQR is isosceles. The point P has position vector \(- 3 \mathbf { i } - \mathbf { j }\). The point S is added so that PQRS is a parallelogram.
  2. Find the position vector of S .
OCR MEI AS Paper 1 2020 November Q4
4 In this question, the \(x\) and \(y\) directions are horizontal and vertically upwards respectively.
A particle of mass 1.5 kg is in equilibrium under the action of its weight and forces \(\mathbf { F } _ { 1 } = \binom { 4 } { - 2 } \mathrm {~N}\)
and \(\mathbf { F } _ { 2 }\). and \(\mathbf { F } _ { 2 }\).
  1. Find the force \(\mathbf { F } _ { 2 }\). The force \(\mathbf { F } _ { 2 }\) is changed to \(\binom { 2 } { 20 } \mathrm {~N}\).
  2. Find the acceleration of the particle.
OCR MEI AS Paper 1 2020 November Q5
5 Fig. 5.1 shows part of the curve \(y = x ^ { \frac { 1 } { 2 } }\). P is the point \(( 1,1 )\) and \(Q\) is the point on the curve with \(x\)-coordinate \(1 + h\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{a1b6c827-7d74-4527-9b60-58872e3d5ef7-4_451_611_991_242} \captionsetup{labelformat=empty} \caption{Fig. 5.1}
\end{figure} Table 5.2 shows, for different values of \(h\), the coordinates of P , the coordinates of Q , the change in \(y\) from P to Q and the gradient of the chord PQ . \begin{table}[h]
\(x\) for P\(y\) for P\(h\)\(x\) for Q\(y\) for Qchange in \(y\)gradient PQ
111
110.11.11.0488090.0488090.488088
110.011.011.0049880.0049880.498756
110.0011.0011.0005000.0005000.499875
\captionsetup{labelformat=empty} \caption{Table 5.2}
\end{table}
  1. Fill in the missing values for the case \(h = 1\) in the copy of Table 5.2 in the Printed Answer Booklet. Give your answers correct to 6 decimal places where necessary.
  2. Explain how the sequence of values in the last column of Table 5.2 relates to the gradient of the curve \(y = x ^ { \frac { 1 } { 2 } }\) at the point \(P\).
  3. Use calculus to find the gradient of the curve at the point P .
OCR MEI AS Paper 1 2020 November Q6
6 In this question you must show detailed reasoning.
A particle moves in a straight line. Its velocity \(v \mathrm {~ms} ^ { - 1 }\) after \(t \mathrm {~s}\) is given by \(\mathrm { v } = \mathrm { t } ^ { 3 } - 5 \mathrm { t } ^ { 2 }\).
  1. Find the times at which the particle is stationary.
  2. Find the total distance travelled by the particle in the first 6 seconds.
OCR MEI AS Paper 1 2020 November Q7
7 In this question you must show detailed reasoning.
A curve has equation \(y = 4 x ^ { 3 } - 6 x ^ { 2 } - 9 x + 4\).
  1. Sketch the gradient function for this curve, clearly indicating the points where the gradient is zero.
  2. Find the set of values of \(x\) for which the gradient function is decreasing. Give your answer using set notation.
OCR MEI AS Paper 1 2020 November Q8
8 The point A has coordinates \(( - 1 , - 2 )\) and the point B has coordinates (7,4). The perpendicular bisector of \(A B\) intersects the line \(y + 2 x = k\) at \(P\). Determine the coordinates of P in terms of \(k\).
OCR MEI AS Paper 1 2020 November Q9
9 A car travelling in a straight line accelerates uniformly from rest to \(V \mathrm {~ms} ^ { - 1 }\) in \(T \mathrm {~s}\). It then slows down uniformly, coming to rest after a further \(2 T\) s.
  1. Sketch a velocity-time graph for the car. The acceleration in the first stage of the motion is \(2.5 \mathrm {~ms} ^ { - 2 }\) and the total distance travelled is 240 m .
  2. Calculate the values of \(V\) and \(T\).
OCR MEI AS Paper 1 2020 November Q10
10 An astronaut on the surface of the moon drops a ball from a point 2 m above the surface.
  1. Without any calculations, explain why a standard model using \(g = 9.8 \mathrm {~ms} ^ { - 2 }\) will not be appropriate to model the fall of the ball. The ball takes 1.6s to hit the surface.
  2. Find the acceleration of the ball which best models its motion. Give your answer correct to 2 significant figures.
  3. Use this value to predict the maximum height of the ball above the point of projection when thrown vertically upwards with an initial velocity of \(15 \mathrm {~ms} ^ { - 1 }\).
OCR MEI AS Paper 1 2020 November Q11
11 In this question you must show detailed reasoning.
  1. A student is asked to solve the inequality \(x ^ { \frac { 1 } { 2 } } < 4\). The student argues that \(x ^ { \frac { 1 } { 2 } } < 4 \Leftrightarrow x < 16\), so that the solution is \(\{ x : x < 16 \}\).
    Comment on the validity of the student's argument.
  2. Solve the inequality \(\left( \frac { 1 } { 2 } \right) ^ { x } < 4\).
  3. Show that the equation \(2 \log _ { 2 } ( x + 8 ) - \log _ { 2 } ( x + 6 ) = 3\) has only one root.
OCR MEI AS Paper 1 2021 November Q1
1 Find the coordinates of the point of intersection of the lines \(y = 3 x - 2\) and \(x + 2 y = 10\).
OCR MEI AS Paper 1 2021 November Q2
2 An unmanned craft lands on the planet Mars. A small bolt falls from the craft onto the surface of the planet. It falls 1.5 m from rest in 0.9 s . Calculate the acceleration due to gravity on Mars.
OCR MEI AS Paper 1 2021 November Q3
3 Forces \(\mathbf { F } _ { 1 } = ( 2 \mathbf { i } + 9 \mathbf { j } ) \mathbf { N }\) and \(\mathbf { F } _ { 2 } = ( - \mathbf { i } + \mathbf { j } ) \mathbf { N }\) act on a particle. A third force \(\mathbf { F } _ { 3 }\) acts so that the particle is in equilibrium under the action of the three forces. Find the force \(\mathbf { F } _ { 3 }\).
OCR MEI AS Paper 1 2021 November Q4
4
  1. Show that \(4 ! < 4 ^ { 4 }\).
  2. Nina believes that the statement \(n ! < n ^ { n }\) is true for all positive integers \(n\). Prove that Nina is not correct.
OCR MEI AS Paper 1 2021 November Q5
5 The diagram shows the triangle ABC in which \(\mathrm { AC } = 13 \mathrm {~cm}\) and AB is the shortest side. The perimeter of the triangle is 32 cm . The area is \(24 \mathrm {~cm} ^ { 2 }\) and \(\sin \mathrm { B } = \frac { 4 } { 5 }\). Determine the lengths of AB and BC .
OCR MEI AS Paper 1 2021 November Q6
6 The displacement of a particle is modelled by the equation \(\mathrm { s } = 7 + 4 \mathrm { t } - \mathrm { t } ^ { 2 }\), where \(s\) metres is the displacement from the origin at time \(t\) seconds. The diagram shows part of the displacement-time graph for the particle. The point \(( 2,11 )\) is the maximum point on the graph.
\includegraphics[max width=\textwidth, alt={}, center]{5428eabf-431d-4db1-8c25-1f2b9570d9aa-4_513_1381_422_255}
  1. Kai argues that the point \(( 2,11 )\) is on the graph, so the particle has travelled a distance of 11 metres in the first 2 seconds. Comment on the validity of Kai’s argument.
  2. Determine the total distance the particle travels in the first 10 seconds.
  3. Find an expression for the velocity of the particle at time \(t\).
  4. Find the speed of the particle when \(t = 10\).
OCR MEI AS Paper 1 2021 November Q7
7 The diagram shows part of a curve which passes through the point \(( 1,0 )\).
\includegraphics[max width=\textwidth, alt={}, center]{5428eabf-431d-4db1-8c25-1f2b9570d9aa-4_711_704_1722_258} The gradient of the curve is given by \(\frac { d y } { d x } = 6 x + \frac { 8 } { x ^ { 3 } }\).
Determine whether the curve passes through the point \(( 2,12 )\).
OCR MEI AS Paper 1 2021 November Q9
9
  1. Sketch both of the following on the axes provided in the Printed Answer Booklet.
    1. The curve \(\mathrm { y } = \frac { 12 } { \mathrm { x } }\), stating the coordinates of at least one point on the curve.
    2. The line \(y = 2 x + 8\), stating the coordinates of the points at which the line crosses the axes.
  2. In this question you must show detailed reasoning. Determine the exact coordinates of the points of intersection of the curve and the line.
OCR MEI AS Paper 1 2021 November Q10
10 A rescue worker is lowered from a helicopter on a rope. She attaches a second rope to herself and to a woman in difficulties on the ground. The helicopter winches both women upwards with the rescued woman vertically below the rescue worker, as shown in the diagram.
\includegraphics[max width=\textwidth, alt={}, center]{5428eabf-431d-4db1-8c25-1f2b9570d9aa-6_509_460_408_262} The model for this motion uses the following modelling assumptions:
  • each woman can be modelled as a particle;
  • the ropes are both light and inextensible;
  • there is no air resistance to the motion;
  • the motion is in a vertical line.
    1. Explain what it means when the women are each 'modelled as a particle'.
    2. Explain what 'light' means in this context.
The tension in the rope to the helicopter is 1500 N . The rescue worker has a mass of 65 kg and the rescued woman has a mass of 75 kg .
  • Draw a diagram showing the forces on the two women.
  • Write down the equation of motion of the two women considered as a single particle.
  • Calculate the acceleration of the women.
  • Determine the tension in the rope connecting the two women.
  • OCR MEI AS Paper 1 2021 November Q11
    11 On the day that a new consumer product went on sale (day zero), a call centre received 1 call about it. On the 2nd day after day zero the call centre received 3 calls, and on the 10th day after day zero there were 200 calls. Two models were proposed to model \(N\), the number of calls received \(t\) days after day zero.
    Model 1 is a linear model \(\mathrm { N } = \mathrm { mt } + \mathrm { c }\).
    1. Determine the values of \(m\) and \(c\) which best model the data for 2 days and 10 days after day zero.
    2. State the rate of increase in calls according to model 1.
    3. Explain why this model is not suitable when \(t = 1\). Model 2 is an exponential model \(\mathbf { N } = e ^ { 0.53 t }\).
    4. Verify that this is a good model for the number of calls when \(t = 2\) and \(t = 10\).
    5. Determine the rate of increase in calls when \(t = 10\) according to model 2 .
    OCR MEI AS Paper 1 Specimen Q1
    1 Simplify \(\frac { \left( 2 x ^ { 2 } y \right) ^ { 3 } \times 4 x ^ { 3 } y ^ { 5 } } { 2 x y ^ { 10 } }\).