OCR MEI AS Paper 1 2020 November — Question 5

Exam BoardOCR MEI
ModuleAS Paper 1 (AS Paper 1)
Year2020
SessionNovember
TopicDifferentiation from First Principles

5 Fig. 5.1 shows part of the curve \(y = x ^ { \frac { 1 } { 2 } }\). P is the point \(( 1,1 )\) and \(Q\) is the point on the curve with \(x\)-coordinate \(1 + h\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{a1b6c827-7d74-4527-9b60-58872e3d5ef7-4_451_611_991_242} \captionsetup{labelformat=empty} \caption{Fig. 5.1}
\end{figure} Table 5.2 shows, for different values of \(h\), the coordinates of P , the coordinates of Q , the change in \(y\) from P to Q and the gradient of the chord PQ . \begin{table}[h]
\(x\) for P\(y\) for P\(h\)\(x\) for Q\(y\) for Qchange in \(y\)gradient PQ
111
110.11.11.0488090.0488090.488088
110.011.011.0049880.0049880.498756
110.0011.0011.0005000.0005000.499875
\captionsetup{labelformat=empty} \caption{Table 5.2}
\end{table}
  1. Fill in the missing values for the case \(h = 1\) in the copy of Table 5.2 in the Printed Answer Booklet. Give your answers correct to 6 decimal places where necessary.
  2. Explain how the sequence of values in the last column of Table 5.2 relates to the gradient of the curve \(y = x ^ { \frac { 1 } { 2 } }\) at the point \(P\).
  3. Use calculus to find the gradient of the curve at the point P .